TDP
Maksymalny TDP zapewniany przez układ chłodzenia. Należy pamiętać, że parametr ten jest podawany tylko dla rozwiązań wyposażonych w radiatory (patrz „Rodzaj”); dla wentylatorów wykonywanych osobno o sprawności decydują inne parametry, przede wszystkim wartości przepływu powietrza (patrz wyżej).
TDP można opisać jako ilość ciepła, którą układ chłodzenia jest w stanie usunąć z obsługiwanego podzespołu. W związku z tym, do normalnej pracy całego układu konieczne jest, aby TDP układu chłodzenia nie było niższe niż rozpraszanie ciepła tego elementu (dane dotyczące rozpraszania ciepła są zwykle podane w szczegółowej specyfikacji komponentu). A najlepiej wybrać chłodnice z rezerwą mocy co najmniej 20 - 25% - da to dodatkową gwarancję w przypadku wymuszonych trybów pracy i sytuacji awaryjnych (w tym zanieczyszczenia obudowy i spadku efektywności wymiany powietrza).
Jeśli chodzi o konkretne liczby, to najskromniejsze współczesne układy chłodzenia zapewniają TDP
do 100 W, najbardziej zaawansowane —
do 250 W i nawet
więcej.
Liczba wentylatorów
Liczba wentylatorów w konstrukcji układu chłodzenia. Większa liczba wentylatorów zapewnia wyższą wydajność (pod warunkiem, że pozostałe parametry są identyczne); z drugiej strony odpowiednio zwiększają się wymiary i hałas podczas pracy. Ponadto zauważamy, że jeżeli inne cechy są podobne, mniejsza liczba dużych wentylatorów jest uważana za bardziej zaawansowany wariant niż większa liczba małych; zobacz "Średnica wentylatora", aby uzyskać szczegółowe informacje.
Maks. prędkość obrotowa
Najwyższa prędkość obrotowa jaką obsługuje wentylator układu chłodzenia; w przypadku modeli bez regulatora prędkości (patrz poniżej), podawana jest prędkość nominalna. W „najwolniejszych” współczesnych wentylatorach maksymalna prędkość
nie przekracza 1000 obr./min, w „najszybszych” może to być
do 2500 obr./min, a nawet
więcej.
Należy pamiętać, że parametr ten jest ściśle powiązany ze średnicą wentylatora (patrz wyżej): im mniejsza średnica, tym wyższe muszą być obroty, aby osiągnąć żądane wartości przepływu powietrza. W takim przypadku prędkość obrotowa wpływa bezpośrednio na poziom hałasu i wibracji. Dlatego uważa się, że najlepiej jest zapewnić wymaganą objętość powietrza dużymi i stosunkowo „wolnymi” wentylatorami; a stosowanie „szybkich” małych modeli ma sens w przypadku, gdy kompaktowość ma kluczowe znaczenie. Przy porównaniu prędkości modeli tej samej wielkości - wyższe obroty mają pozytywny wpływ na wydajność, lecz zwiększają nie tylko poziom hałasu, ale także wzrost ceny i zużycia energii.
Maks. przepływ powietrza
Maksymalny przepływ powietrza, jaki może wytworzyć wentylator chłodzący; jest mierzony w CFM - stopach sześciennych na minutę.
Im wyższy liczba CFM, tym wydajniejszy jest wentylator. Z drugiej strony wysoka wydajność wymaga albo dużej średnicy (co wpływa na rozmiar i koszt) albo dużej prędkości (co zwiększa hałas i wibracje). Dlatego przy wyborze warto nie gonić za maksymalnym przepływem powietrza, lecz stosować specjalne formuły, które pozwalają obliczyć wymaganą liczbę CFM w zależności od rodzaju i mocy chłodzonego elementu oraz innych parametrów. Takie formuły można znaleźć w specjalnych źródłach. Jeśli chodzi o konkretne liczby, to w najskromniejszych systemach wydajność
nie przekracza 30 CFM, a w najmocniejszych systemach może to być nawet 80 CFM, a nawet
więcej.
Należy również pamiętać, że rzeczywista wartość przepływu powietrza przy największej prędkości jest zwykle niższa od deklarowanego maksimum; patrz "Ciśnienie statyczne", aby uzyskać szczegółowe informacje.
Średni czas bezawaryjnej pracy
Całkowity czas, przez który wentylator chłodzący nie ulegnie awarii. Należy pamiętać, że po wyczerpaniu tego czasu urządzenie niekoniecznie ulegnie zepsuciu – wiele współczesnych wentylatorów ma znaczny zapas wytrzymałości i jest w stanie pracować jeszcze przez jakiś czas. Przy tym, warto oceniać ogólną trwałość układu chłodzenia właśnie według tego parametru.
Poziom hałasu
Standardowy poziom hałasu w układzie chłodzenia podczas pracy. Zazwyczaj w tym punkcie wskazywany jest maksymalny hałas podczas normalnej pracy, bez przeciążeń i innych „ekstremalnych” sytuacji.
Należy zaznaczyć, że poziom hałasu jest podawany w decybelach i jest to wielkość nieliniowa. Tak więc, najłatwiejszym sposobem oszacowania rzeczywistej głośności jest skorzystanie z tabel porównawczych. Oto tabela wartości występujących we współczesnych układach chłodzenia:
20 dB - ledwo słyszalny dźwięk (cichy szept osoby w odległości około 1 m, tło dźwiękowe na otwartym polu poza miastem przy spokojnej pogodzie);
25 dB - bardzo cicho (zwykły szept w odległości 1 m);
30 dB - cichy (zegar ścienny). To właśnie taki hałas zgodnie z normami sanitarnymi jest maksymalnym dopuszczalnym dla stałych źródeł dźwięku w nocy (od 23.00 do 7.00). Oznacza to, że jeśli komputer jest używany w nocy, pożądane jest, aby głośność układu chłodzenia nie przekraczała tej wartości.
35 dB - rozmowa półgłosem, tło dźwiękowe w cichej bibliotece;
40 dB - stosunkowo cicha rozmowa, lecz już pełnym głosem. Maksymalny dopuszczalny poziom hałasu w dzień zgodnie z normami sanitarnymi dla pomieszczeń mieszkalnych, od 7.00 do 23.00. Jednak nawet najgłośniejsze układy chłodzenia zwykle nie osiągają tej wartości, maksimum dla takiego sprzętu wynosi około 38 - 39 dB.
Socket
Rodzaj gniazda - złącza procesora - z którym kompatybilny jest odpowiedni system chłodzenia.
Różne gniazda różnią się nie tylko kompatybilnością z jednym lub drugim procesorem, lecz także konfiguracją gniazda dla systemu chłodzenia. Kupując układ chłodzenia procesora oddzielnie, upewnij się, że jest on kompatybilny ze złączem. Obecnie produkowane są rozwiązania głównie dla następujących typów gniazd:
AMD AM2/AM3/FM1/FM2,
AMD AM4,
AMD AM5,
AMD TR4/TRX4,
Intel 775,
Intel 1150,
Intel 1155/1156,
Intel 1366,
Intel 2011/2011 v3 ,
Intel 2066,
Intel 1151/1151 v2,
Intel 1200,
Intel 1700.
Podświetlenie
Obecność
własnego podświetlenia w konstrukcji układu chłodzenia.
Podświetlenie pełni funkcję czysto estetyczną - nadaje urządzeniu stylowy wygląd, który dobrze komponuje się z pozostałymi elementami w oryginalnym designie. Dzięki temu takie układy chłodzenia są szczególnie doceniane przez graczy i fanów modyfikacji zewnętrznej PC - zwłaszcza, że oświetlenie może być różne, a w najbardziej zaawansowanych modelach przewidziana jest nawet synchronizacja podświetlenia z innymi podzespołami (patrz niżej). Z drugiej strony funkcja ta nie wpływa na wydajność i charakterystyki robocze, lecz nieuchronnie wpływa na całkowity koszt, czasami dość zauważalnie. Dlatego jeśli wygląd nie jest dla Ciebie ważny, najlepszym wyborem najprawdopodobniej będzie
system chłodzenia bez podświetlenia.
Kolor podświetlenia
Kolor podświetlenia zainstalowanego w układzie chłodzenia.
Więcej szczegółów na temat samego podświetlenia znajdziesz powyżej. Tutaj zauważamy, że w podświetleniu nowoczesnych systemów chłodzenia występuje zarówno jeden kolor (najczęściej
czerwony lub
niebieski , rzadziej
zielony ,
żółty ,
biały lub
fioletowy a>) jak i układy wielokolorowe, takie jak RGB i
ARGB . Wybór podświetlenia jednokolorowego zależy głównie od preferencji estetycznych, jednak dwie ostatnie odmiany należy omówić osobno.
Podstawowa zasada działania systemów RGB i ARGB jest taka sama: konstrukcja przewiduje zestaw diod LED o trzech podstawowych kolorach - czerwonym (Red), zielonym (Green) i niebieskim (Blue), a poprzez zmianę liczby i jasności włączonych diod LED można sterować nie tylko intensywnością, lecz także odcieniem poświaty. Różnica między tymi odmianami tkwi w funkcjonalności: systemy RGB obsługują ograniczony zestaw kolorów (zwykle do półtora tuzina, a nawet mniej), natomiast ARGB pozwala wybrać niemal dowolny odcień z całej dostępnej palety barw. Jednocześnie oba warianty mogą obsługiwać synchronizację podświetlenia (patrz poniżej); na ogół funkcja ta nie jest wymagana w systemach RGB i
...ARGB, lecz jest w nich stosowana prawie zawsze.