Montaż
Typ standardowego mocowania przewidzianego w konstrukcji teleskopu. Montaż to zespół mechaniczny, który kieruje optykę do określonego punktu na niebie i zapewnia stabilność teleskopu po wycelowaniu. Takie systemy mogą należeć do jednego z następujących typów:
-
Azimuthal. Najprostsza odmiana, podobna do systemów stosowanych w statywach fotograficznych i wideo. Pełna nazwa takiego montażu to alt azymut, ponieważ zapewnia prowadzenie wzdłuż dwóch oddzielnych osi - wysokości i azymutu. Systemy tego typu są proste, zwarte i niedrogie, całkiem nadają się do stosunkowo prostych obserwacji, ale mniej nadają się do astrofotografii niż równikowe. To drugie wynika z faktu, że każdy obiekt astronomiczny podczas fotografowania musi być „prowadzony” po niebie: astrofotografia wymaga długich naświetleń, a ruch ciał niebieskich niewidoczny dla ludzkiego oka prowadzi do ich „rozmazania” w kadrze podczas fotografowania obiektyw stałoogniskowy. A trajektorie takich obiektów są takie, że aby je śledzić, montaż azymutalny musi obracać teleskop wzdłuż dwóch osi jednocześnie z nierówną i nierównomierną prędkością, a nawet zapewniać korektę obrotu obiektu w kadrze. Wszystko to wymaga zastosowania złożonych systemów sterowania (patrz „Automatyczne prowadzenie”). Inną wadą tego typu montażu jest trudność obserwacji w zenicie: gdy obiekt przechodzi przez zenit, teleskop trzeba bardzo szybko obrócić w azymucie, a wiele konstrukcji w ogóle nie pozwala na monta
...ż rury ściśle w pionie.
- Dobson. System Dobsona składa się z jednego lub dwóch wsporników pionowych zamontowanych na obrotowej podstawie; mocowanie teleskopu do tych wsporników odpowiada za pionowy ruch tubusu, a obrót podstawy odpowiada za ruch poziomy. Takie konstrukcje są zwarte, niezwykle proste, niedrogie i wygodne dla obserwatorów amatorów; są uważane za najlepszą opcję dla teleskopów zwierciadlanych, ale w refraktorach (patrz „Konstrukcja”) z wielu powodów nie są w ogóle używane.
- Równikowe. Mocowania równikowe, podobnie jak mocowania azymutalne, obracają teleskop w dwóch osiach. Jednak teleskop w takim układzie jest ustawiony w taki sposób, że oś jego "poziomego" (umownie) obrotu jest równoległa do osi obrotu Ziemi, a oś "pionowa" jest prostopadła do osi Ziemi. To znacznie upraszcza śledzenie obiektów astronomicznych poruszających się po niebie w wyniku obrotu Ziemi. Aby stale utrzymywać „cel” w obiektywie, wystarczy obracać teleskopem wokół jednej z osi ze stałą prędkością - nie wymaga to skomplikowanej elektroniki, wystarczy dość proste urządzenie, jak silnik elektryczny ze skrzynią biegów. Z drugiej strony mocowania równikowe są znacznie bardziej skomplikowane konstrukcyjnie i droższe niż mocowania azymutalne, a ponadto wymagają dostosowania do szerokości geograficznej miejsca obserwacji.Ogniskowa
Ogniskowa obiektywu teleskopu.
Ogniskowa to odległość od środka optycznego obiektywu do płaszczyzny, na którą rzutowany jest obraz (ekran, film, matryca), przy której obiektyw teleskopu wytworzy najczystszy obraz. Im dłuższa ogniskowa, tym większe powiększenie może zapewnić teleskop; należy jednak pamiętać, że powiększenie jest również związane z ogniskową używanego okularu i średnicą obiektywu (więcej na ten temat poniżej). Ale to, na co parametr ten bezpośrednio wpływa, to wymiary urządzenia, a dokładniej długość rurki. W przypadku refraktorów i większości reflektorów (patrz „Konstrukcja”) długość teleskopu w przybliżeniu odpowiada jego ogniskowej, ale w modelach z lustrzanym obiektywem może być 3-4 razy krótsza od ogniskowej.
Zauważ też, że ogniskowa jest uwzględniana w niektórych wzorach charakteryzujących jakość teleskopu. Na przykład uważa się, że dla dobrej widoczności przez najprostszy rodzaj teleskopu ogniotrwałego - tzw. achromat - konieczne jest, aby jego ogniskowa była nie mniejsza niż D^2/10 (kwadrat średnicy obiektywu podzielony przez 10), a lepiej - nie mniej niż D^2/9.
Apertura
Stosunek apertury teleskopu charakteryzuje całkowitą ilość światła „przechwyconego” przez system i przekazanego do oka obserwatora. Pod względem liczb wartość przysłony to stosunek średnicy obiektywu do ogniskowej (patrz wyżej): na przykład w przypadku systemu z przysłoną 100 mm i ogniskową 1000 mm wartość przysłony będzie wynosił 100/1000 = 1/10. Wskaźnik ten jest również nazywany „aperturą względną”.
Przy wyborze według przesłony należy przede wszystkim wziąć pod uwagę cele, do których planowana jest luneta. Duża apertura względna jest bardzo wygodna w astrofotografii, ponieważ przepuszcza dużą ilość światła i umożliwia pracę przy dłuższych czasach otwarcia migawki. Ale do obserwacji wizualnych nie jest wymagany wysoki współczynnik apertury - wręcz przeciwnie, teleskopy o dłuższym ognisku (a tym samym o mniejszej aperturze) charakteryzują się niższym poziomem aberracji i umożliwiają stosowanie wygodniejszych okularów do obserwacji. Zwracamy również uwagę, że duża apertura wymaga zastosowania dużych obiektywów, co odpowiednio wpływa na wielkość, wagę i cenę teleskopu.
Zdolność rozdzielcza (Rayleigh)
Rozdzielczość teleskopu wyznaczona według kryterium Rayleigha.
Rozdzielczość w tym przypadku jest wskaźnikiem charakteryzującym zdolność teleskopu do rozróżniania poszczególnych źródeł światła znajdujących się w bliskiej odległości, innymi słowy zdolność widzenia ich dokładnie jako oddzielnych obiektów. Wskaźnik ten jest mierzony w sekundach łukowych (1 '' to 1/3600 stopnia). W odległościach mniejszych niż rozdzielczość źródła te (na przykład gwiazdy podwójne) połączą się w solidny punkt. Tak więc im niższe liczby w tym punkcie, im wyższa rozdzielczość, tym lepiej teleskop nadaje się do oglądania blisko położonych obiektów. Należy jednak pamiętać, że w tym przypadku nie mówimy o możliwości widzenia zupełnie odrębnych obiektów od siebie, a jedynie o możliwości identyfikacji dwóch źródeł światła w wydłużonej plamce świetlnej, scalonej (dla obserwatora) w jedno. Aby obserwator mógł zobaczyć dwa oddzielne źródła, odległość między nimi musi być w przybliżeniu dwukrotnie większa od deklarowanej rozdzielczości.
Kryterium Rayleigha jest wartością teoretyczną i jest obliczane przy użyciu dość skomplikowanych wzorów, które uwzględniają, oprócz średnicy obiektywu teleskopu (patrz wyżej), również długość fali obserwowanego światła, odległość między obiektami a obserwatorem itp. . Oddzielnie widoczne, zgodnie z tą metodą, są uważane za obiekty znajdujące się w większej odległości od siebie niż dla opisanej powyżej granicy Dawesa; dlatego dla tego samego telesko...pu rozdzielczość Rayleigha będzie niższa niż rozdzielczość Dawesa (a liczby wskazane w tym punkcie są odpowiednio wyższe). Z drugiej strony wskaźnik ten jest mniej zależny od cech osobistych użytkownika: nawet niedoświadczeni obserwatorzy potrafią rozróżnić obiekty w odległości odpowiadającej kryterium Rayleigha.
Szukacz
Typ szukacza dołączonego do teleskopu.
Poszukiwacz to urządzenie zaprojektowane do wycelowania urządzenia w określony obiekt niebieski. Potrzeba takiego urządzenia wynika z faktu, że lunety, ze względu na duże powiększenie, mają bardzo małe kąty widzenia, co znacznie komplikuje prowadzenie wzrokowe: tak mały obszar nieba jest widoczny w okularze, że można go Określone na podstawie tych danych dokładnie, gdzie skierowany jest teleskop i gdzie jest potrzebny, obracanie jest prawie niemożliwe. Prowadzenie „wzdłuż tuby” jest bardzo niedokładne, szczególnie w przypadku modeli lustrzanych o dużej grubości i stosunkowo krótkiej długości. Szukacz natomiast ma małe powiększenie (lub działa w ogóle bez powiększenia) i odpowiednio szerokie kąty widzenia, pełniąc tym samym rolę swoistego „celownika” dla głównego układu optycznego teleskopu.
We współczesnych teleskopach można zastosować następujące typy szukaczy:
-
Optyczne. Najczęściej szukacze te mają postać małego monokularu skierowanego równolegle do osi optycznej teleskopu. W polu widzenia monokularu stosuje się zwykle oznaczenia, które pokazują, który punkt w widzialnej przestrzeni odpowiada polu widzenia samego teleskopu. W większości przypadków celowniki optyczne zapewniają również pewne powiększenie - zwykle rzędu 5 - 8x, dlatego przy pracy z takimi układami z reguły nadal wymagane jest wstępne skierowanie lunety "wzdłuż tuby". Zaletami optyki w porównaniu z szukacza
...mi LED są prostota konstrukcji, niski koszt, a także dobra przydatność do obserwacji w mieście, na przedmieściach i innych warunkach przy dość jasnym niebie. Ponadto takie urządzenia są niezależne od źródeł zasilania. Na tle ciemnego nieba oznaczenia mogą być słabo widoczne, ale w takich przypadkach istnieje specyficzny rodzaj szukaczy - z podświetlanym celownikiem. Co prawda podświetlenie wymaga baterii, ale nawet przy ich braku oznaczenia pozostają widoczne - jak w konwencjonalnym, niepodświetlanym szukaczu. Nasadki tego typu są oznaczone tradycyjnym dla optyki indeksem dwóch liczb, z których pierwsza odpowiada krotności, druga średnicy obiektywu - np. 5x24.
- Z prowadzeniem punktowym (LED). Celowniki tego typu są w zasadzie podobne do celowników kolimatorowych: niezbędnym elementem konstrukcyjnym jest okienko obserwacyjne (w postaci charakterystycznego szkła w ramie), na które rzutowany jest znacznik ze źródła światła. Ten znak może mieć formę punktu lub innego kształtu - krzyża, pierścienia z kropką itp. Urządzenie takiego szukacza jest takie, że położenie znaku w oknie zależy od położenia oka obserwatora, ale ten znak zawsze wskazuje punkt, w który skierowany jest teleskop. Celowniki LED są wygodniejsze od celowników optycznych w tym sensie, że użytkownik nie musi zbliżać oczu do okularu - znak jest dobrze widoczny z odległości 20-30 cm, co ułatwia celowanie w niektórych sytuacjach ( na przykład, jeśli obserwowany obiekt znajduje się blisko zenitu). Świetnie sprawdzają się również na ciemnym niebie. Zwykle nie mają powiększenia, ale nie można tego nazwać jednoznaczną wadą – dla poszukiwacza często ważniejsze od przybliżenia jest szerokie pole widzenia. Ale jedną z jednoznacznych praktycznych mankamentów jest konieczność posiadania źródła zasilania (najczęściej baterii) – bez nich system zamienia się w bezużyteczny kawałek szkła. Ponadto kolimatory na ogół są znacznie droższe od klasycznej optyki, a na tle rozświetlonego nieba znak może się zgubić.
Zwróć uwagę, że istnieją teleskopy, które w ogóle nie mają szukaczy – są to modele o małej średnicy obiektywu, w których minimalne powiększenie (patrz wyżej) jest niewielkie i zapewnia dość szerokie pole widzenia.Okulary
W tym punkcie wyszczególniono okulary znajdujące się w standardowym zakresie dostawy teleskopu, a dokładniej ogniskowe tych okularów.
Mając te dane i znając ogniskową teleskopu (patrz wyżej), można określić powiększenia, jakie urządzenie może dać po wyjęciu z pudełka. W przypadku teleskopu bez soczewek Barlowa (patrz niżej) i innych dodatkowych elementów o podobnym przeznaczeniu, powiększenie będzie równe ogniskowej obiektywu podzielonej przez ogniskową okularu. Na przykład optyka 1000 mm wyposażona w „oczy” 5 i 10 mm będzie w stanie uzyskać powiększenia 1000/5=200x i 1000/10=100x.
W przypadku braku odpowiedniego okularu w zestawie, można go zazwyczaj dokupić osobno.
Filtr księżycowy
Dostępność filtra księżycowego w standardowym wyposażeniu teleskopu.
To przydatne akcesorium zmniejsza jasność i kontrast światła pochodzącego z Księżyca, pozwalając obserwatorowi uzyskać wyraźniejszy obraz powierzchni satelity Ziemi. Filtry księżycowe mają zazwyczaj różny stopień zaciemnienia i są dostępne w różnych wersjach (neutralny szary, zielony, polaryzacyjny itp.). Wybór konkretnej opcji zależy od warunków obserwacji i preferencji użytkownika.
Korzystanie z filtra księżycowego pozwala na wygodniejsze i bardziej szczegółowe badanie różnych cech powierzchni Księżyca, takich jak kratery, góry i doliny, zapobiegając nadmiernemu oświetleniu i łagodzeniu kontrastu. Większość współczesnych teleskopów wyposażona jest w filtry umieszczane na obiektywie, dostępne są również filtry okularowe - są bardziej kompaktowe i tańsze.
Zwierciadło
Rodzaj zwierciadła zainstalowanego w teleskopie zwierciadlanym lub kombinowanym (patrz „Konstrukcja”).
Przypomnijmy, że zwierciadło w takich modelach pełni tę samą funkcję, co soczewka obiektywu w klasycznych teleskopach refrakcyjnych - czyli jest bezpośrednio odpowiedzialne za powiększanie obrazu. Rodzaj zwierciadła wskazuje jego ogólny kształt:
- Sferyczne. Najpopularniejszy wariant, co wynika przede wszystkim z łatwości produkcji, a co za tym idzie niskiego kosztu. Z drugiej strony zwierciadło sferyczne z technicznego punktu widzenia nie jest w stanie skoncentrować wiązki światła tak skutecznie, jak robi to zwierciadło paraboliczne. Powoduje to zniekształcenia znane jako aberracje sferyczne; mogą one prowadzić do zauważalnego pogorszenia ostrości, a efekt ten jest najbardziej zauważalny przy dużych powiększeniach. Wprawdzie istnieją teleskopy, na które to zjawisko prawie nie ma wpływu - chodzi o modele długoogniskowe, w których ogniskowa jest 8 - 10 razy większa od średnicy zwierciadła; jednak takie urządzenia są nieporęczne i ciężkie. W związku z tym warto szukać modeli z tego rodzaju zwierciadłami głównie w dwóch przypadkach: albo jeśli teleskop ma być używany przy stosunkowo małym powiększeniu (np. do obserwacji Księżyca, planet, konstelacji), lub jeśli nie jesteś zaniepokojony wymiarami i wagą.
-
Paraboliczne. Zwierciadła w formie paraboloidy obrotowej niemal idealnie skupiają promienie wpadające do t
...eleskopu we właściwym, punkcie układu optycznego. Dzięki temu reflektory z tym wyposażeniem zapewniają bardzo wyraźny obraz nawet przy dużych powiększeniach i niezależnie od ogniskowej. Główną wadą tego rodzaju zwierciadeł jest dość wysoki koszt związany ze złożonością produkcji. Warto więc zwrócić uwagę na reflektory paraboliczne przede wszystkim, gdy opisywane zalety jednoznacznie przeważają; typowym przykładem jest poszukiwanie stosunkowo kompaktowego teleskopu do obserwacji obiektów głębokiego kosmosu.Waga całkowita
Całkowita waga całego teleskopu, wliczając montaż i statyw.
Niewielka waga jest wygodna przede wszystkim do „polowego” użytkowania i częstych ruchów z miejsca na miejsce. Natomiast minusem jest skromna wydajność, wysoki koszt, a czasem jedno i drugie. Dodatkowo podstawka niweluje wstrząsy i wibracje gorzej, co może mieć znaczenie w niektórych sytuacjach (np. jeśli punkt obserwacji znajduje się w pobliżu torów kolejowych, przez które często przejeżdżają pociągi towarowe).