Tryb nocny
Polska
Katalog   /   Sprzęt fotograficzny   /   Przyrządy optyczne   /   Teleskopy

Porównanie Celestron NexStar 127SLT vs Skywatcher 1201EQ3-2

Dodaj do porównania
Celestron NexStar 127SLT
Skywatcher 1201EQ3-2
Celestron NexStar 127SLTSkywatcher 1201EQ3-2
Porównaj ceny 1Porównaj ceny 2
Opinie
0
0
1
0
TOP sprzedawcy
Układ optycznysoczewkowo-zwierciadlanysoczewkowy (refraktor)
Montażazymutalnyparalaktyczny (EQ3)
Specyfikacja
Średnica obiektywu127 mm120 mm
Ogniskowa1500 mm1000 mm
Maks. użyteczne powiększenie300 x240 x
Maks. powiększenie rozdzielcze190 x180 x
Minimalne powiększenie18 x17 x
Apertura1/11.81/8.3
Zdolność przenikania13.1 magnitudo12.9 magnitudo
Zdolność rozdzielcza (Dawes)0.91 arcsec0.95 arcsec
Zdolność rozdzielcza (Rayleigh)1.1 arcsec1.17 arcsec
Cechy dodatkowe
Szukaczz lunetką celowniczą (LED)optyczny
Wyciąg okularowyzębatkowyzębatkowy
Średnica gniazda okularu1.25 "2 "
Zwierciadłosferyczne
Zwierciadło diagonalne
Elektroniczne sterowanie
Automatyczne naprowadzanie
Automatyczne śledzenie
Dane ogólne
Długość tubusa96 cm
Wysokość statywu123 cm
Waga całkowita24 kg
Data dodania do E-Katalogmarzec 2015marzec 2015

Układ optyczny

Konstrukcja charakteryzuje ogólną zasadę układu optycznego teleskopu.

- Soczewki (refraktory). Jak sama nazwa wskazuje, za obrazowanie w tych teleskopach odpowiada system obiektywów. Ich główne zalety to prostota konstrukcji i użytkowania, a także bezpretensjonalność na wstrząsy, wstrząsy i niekorzystne warunki pogodowe (co ułatwia użytkowanie na zewnątrz, w tym w zimnych porach roku). Z drugiej strony ten schemat działania wymaga użycia długich rurek, co odpowiednio wpływa na wymiary konstrukcji, a średnica obiektywów (patrz niżej) w refraktorach jest na ogół zauważalnie mniejsza niż w reflektorach. Ponadto obiektywy są podatne na różne zniekształcenia – w szczególności aberrację chromatyczną, która prowadzi do pojawiania się kolorowych halo i obniża jakość obrazu. Jednak we współczesnych teleskopach często stosuje się różne sztuczki projektowe, aby zneutralizować te zniekształcenia. Refraktory doskonale nadają się do obserwacji stosunkowo bliskich obiektów, takich jak księżyc czy planety, a także do obserwacji przeglądowych przy stosunkowo małych powiększeniach. Ponadto ta opcja jest uważana za optymalną dla początkujących astronomów, m.in. dzieci.

- Lustro (odbłyśniki). W teleskopach tej konstrukcji rolę obiektywu pełni zwierciadło wklęsłe, które zapewnia główne powiększenie obrazu. Najprostszy i najpopularniejszy schem...at refleksyjny - teleskop Newtona - polega na połączeniu wklęsłego zwierciadła głównego z dodatkowym płaskim, które odbija obraz w okularze. Istnieją inne odmiany reflektorów, ale są one zauważalnie bardziej skomplikowane i droższe, a zatem nie są szeroko stosowane w astronomii amatorskiej. W każdym razie teleskopy tego typu, będąc prostsze, tańsze i bardziej kompaktowe niż refraktory, mają większe obiektywy i są mniej podatne na zniekształcenia, co umożliwia uzyskanie wysokiej jakości obrazu dość odległych obiektów. Ich główną wadą jest delikatność i trudność w obsłudze. W związku z tym lustra są wrażliwe na uderzenia i wstrząsy, optykę należy co jakiś czas regulować, a przed rozpoczęciem obserwacji należy poczekać na równowagę temperaturową - w przeciwnym razie różnica temperatur powietrza w tubie i na zewnątrz doprowadzi do utrata wyrazistości obrazu (ten sam efekt „zamglenia”, który można zaobserwować nad rozgrzanym asfaltem w letni dzień). Zwróć też uwagę, że większość reflektorów wytwarza zniekształcenia na krawędziach obrazu (tzw. „koma”), co zawęża rzeczywiste pole widzenia i utrudnia ich wykorzystanie w astrofotografii. Jednak w wielu modelach ta wada jest korygowana, w innych możliwe jest zastosowanie obiektywów korekcyjnych i innych podobnych akcesoriów, dzięki czemu reflektory są nadal najpopularniejszą opcją wśród astrofotografów.

- Soczewka lustrzana. Takie teleskopy są w rzeczywistości modelami lustrzanymi (patrz wyżej), zaprojektowanymi według określonych schematów i uzupełnionymi soczewkami korekcyjnymi w celu wyeliminowania różnych zniekształceń. Dzięki temu możliwa jest dalsza poprawa jakości „obrazu” w porównaniu z klasycznymi refraktorami, przy zachowaniu ich głównych zalet - przede wszystkim zwartości i stosunkowo niskiego kosztu. Wśród modeli obiektywów lustrzanych można znaleźć również kilka różnych systemów. Tak więc systemy Schmidta-Cassegraina są kompaktowe, niedrogie i nie tak wrażliwe na drobne wstrząsy jak klasyczne odbłyśniki newtonowskie; a systemy Maksutowa (Maksutow-Cassegrain dla bliskich obiektów i Maksutowa-Newtona dla zdalnych) są nieco droższe, ale uważane są za bardziej zaawansowane.

Montaż

Typ standardowego mocowania przewidzianego w konstrukcji teleskopu. Montaż to zespół mechaniczny, który kieruje optykę do określonego punktu na niebie i zapewnia stabilność teleskopu po wycelowaniu. Takie systemy mogą należeć do jednego z następujących typów:

- Azimuthal. Najprostsza odmiana, podobna do systemów stosowanych w statywach fotograficznych i wideo. Pełna nazwa takiego montażu to alt azymut, ponieważ zapewnia prowadzenie wzdłuż dwóch oddzielnych osi - wysokości i azymutu. Systemy tego typu są proste, zwarte i niedrogie, całkiem nadają się do stosunkowo prostych obserwacji, ale mniej nadają się do astrofotografii niż równikowe. To drugie wynika z faktu, że każdy obiekt astronomiczny podczas fotografowania musi być „prowadzony” po niebie: astrofotografia wymaga długich naświetleń, a ruch ciał niebieskich niewidoczny dla ludzkiego oka prowadzi do ich „rozmazania” w kadrze podczas fotografowania obiektyw stałoogniskowy. A trajektorie takich obiektów są takie, że aby je śledzić, montaż azymutalny musi obracać teleskop wzdłuż dwóch osi jednocześnie z nierówną i nierównomierną prędkością, a nawet zapewniać korektę obrotu obiektu w kadrze. Wszystko to wymaga zastosowania złożonych systemów sterowania (patrz „Automatyczne prowadzenie”). Inną wadą tego typu montażu jest trudność obserwacji w zenicie: gdy obiekt przechodzi przez zenit, teleskop trzeba bardzo szybko obrócić w azymucie, a wiele konstrukcji w ogóle nie pozwala na monta...ż rury ściśle w pionie.

- Dobson. System Dobsona składa się z jednego lub dwóch wsporników pionowych zamontowanych na obrotowej podstawie; mocowanie teleskopu do tych wsporników odpowiada za pionowy ruch tubusu, a obrót podstawy odpowiada za ruch poziomy. Takie konstrukcje są zwarte, niezwykle proste, niedrogie i wygodne dla obserwatorów amatorów; są uważane za najlepszą opcję dla teleskopów zwierciadlanych, ale w refraktorach (patrz „Konstrukcja”) z wielu powodów nie są w ogóle używane.

- Równikowe. Mocowania równikowe, podobnie jak mocowania azymutalne, obracają teleskop w dwóch osiach. Jednak teleskop w takim układzie jest ustawiony w taki sposób, że oś jego "poziomego" (umownie) obrotu jest równoległa do osi obrotu Ziemi, a oś "pionowa" jest prostopadła do osi Ziemi. To znacznie upraszcza śledzenie obiektów astronomicznych poruszających się po niebie w wyniku obrotu Ziemi. Aby stale utrzymywać „cel” w obiektywie, wystarczy obracać teleskopem wokół jednej z osi ze stałą prędkością - nie wymaga to skomplikowanej elektroniki, wystarczy dość proste urządzenie, jak silnik elektryczny ze skrzynią biegów. Z drugiej strony mocowania równikowe są znacznie bardziej skomplikowane konstrukcyjnie i droższe niż mocowania azymutalne, a ponadto wymagają dostosowania do szerokości geograficznej miejsca obserwacji.

Średnica obiektywu

Średnica obiektywu teleskopu; parametr ten jest również nazywany „aperturą”. W modelach ogniotrwałych (patrz „Konstrukcja”) odpowiada średnicy soczewki wejściowej, w modelach z zwierciadłem (patrz tamże) - średnicy zwierciadła głównego. W każdym razie im większa apertura, tym więcej światła wpada do obiektywu, tym wyższa (przy ceteris paribus) apertura i powiększenie teleskopu (patrz poniżej) i tym lepiej nadaje się on do pracy z małymi, ciemnymi lub odległymi obiektami astronomicznymi (przede wszystkim ich fotografowanie). Z drugiej strony przy takiej samej konstrukcji, większy obiektyw jest droższy. Dlatego przy wyborze w oparciu o parametr ten należy brać pod uwagę rzeczywiste potrzeby i cechy zastosowania. Na przykład, jeśli nie planujesz obserwować i fotografować odległych obiektów („głębokie niebo”), nie ma potrzeby gnać za wysokim współczynnikiem apertury. Pamiętaj też, że rzeczywista jakość obrazu zależy od wielu innych czynników.

Projektowanie i produkcja dużych soczewek jest złożona i kosztowna, natomiast zwierciadła mogą być dość duże bez znacznego zwiększenia kosztów. Dlatego teleskopy refraktorowe klasy konsumenckiej praktycznie nie są wyposażone w obiektywy o średnicy większej niż 150 mm, lecz wśród urządzeń typu refleksyjnego wskaźniki 100-150 mm odpowiadają średniemu poziomowi, w najbardziej zaawansowanych modelach wskaźnik ten może przekroczyć 400 mm.

Ogniskowa

Ogniskowa obiektywu teleskopu.

Ogniskowa to odległość od środka optycznego obiektywu do płaszczyzny, na którą rzutowany jest obraz (ekran, film, matryca), przy której obiektyw teleskopu wytworzy najczystszy obraz. Im dłuższa ogniskowa, tym większe powiększenie może zapewnić teleskop; należy jednak pamiętać, że powiększenie jest również związane z ogniskową używanego okularu i średnicą obiektywu (więcej na ten temat poniżej). Ale to, na co parametr ten bezpośrednio wpływa, to wymiary urządzenia, a dokładniej długość rurki. W przypadku refraktorów i większości reflektorów (patrz „Konstrukcja”) długość teleskopu w przybliżeniu odpowiada jego ogniskowej, ale w modelach z lustrzanym obiektywem może być 3-4 razy krótsza od ogniskowej.

Zauważ też, że ogniskowa jest uwzględniana w niektórych wzorach charakteryzujących jakość teleskopu. Na przykład uważa się, że dla dobrej widoczności przez najprostszy rodzaj teleskopu ogniotrwałego - tzw. achromat - konieczne jest, aby jego ogniskowa była nie mniejsza niż D^2/10 (kwadrat średnicy obiektywu podzielony przez 10), a lepiej - nie mniej niż D^2/9.

Maks. użyteczne powiększenie

Największe użyteczne powiększenie, jakie może zapewnić teleskop.

Rzeczywiste powiększenie teleskopu zależy od ogniskowych obiektywu (patrz wyżej) i okularu. Dzieląc pierwsze przez drugie otrzymujemy powiększenie: np. system z obiektywem 1000 mm i okularem 5 mm da 1000/5 = 200x (w przypadku braku innych elementów wpływających na powiększenie, takich jak Barlow obiektyw - patrz poniżej). Dzięki temu, instalując w teleskopie różne okulary, można zmieniać stopień jego powiększenia. Jednak zwiększanie powiększenia poza pewną granicę po prostu nie ma sensu: choć pozorne rozmiary obiektów wzrosną, to ich szczegółowość nie ulegnie poprawie, a zamiast małego i wyraźnego obrazu obserwator zobaczy duży, ale rozmazany. Maksymalne użyteczne powiększenie to dokładnie granica, powyżej której teleskop po prostu nie może zapewnić normalnej jakości obrazu. Uważa się, że zgodnie z prawami optyki wskaźnik ten nie może być większy niż średnica obiektywu w milimetrach pomnożona przez dwa: na przykład dla modelu z soczewką wejściową 120 mm maksymalne użyteczne powiększenie będzie 120x2 = 240x.

Zwróć uwagę, że praca na tym stopniu powiększenia nie oznacza maksymalnej jakości i wyrazistości obrazu, ale w niektórych przypadkach może być bardzo wygodna; więcej szczegółów patrz „Maks. powiększenie rozdzielczości "

Maks. powiększenie rozdzielcze

Najwyższe powiększenie rozdzielcze, jakie może zapewnić teleskop. W rzeczywistości jest to powiększenie, przy którym teleskop zapewnia maksymalną szczegółowość obrazu i pozwala zobaczyć wszystkie detale, które w zasadzie można w nim zobaczyć. Przy zmniejszeniu powiększenia poniżej tej wartości zmniejszają się rozmiary widocznych detali, co pogarsza ich widoczność, przy powiększeniu zauważalne stają się zjawiska dyfrakcyjne, przez co detale zaczynają się zamazywać.

Maksymalne powiększenie rozdzielcze jest mniejsze od maksymalnego użytecznego (patrz wyżej) - wynosi około 1,4 ... 1,5 średnicy obiektywu w milimetrach (różne wzory dają różne wartości, nie da się jednoznacznie określić tej wartości, ponieważ wiele zależy od subiektywnych odczuć obserwatora i cechach jego wzroku). Warto jednak popracować z takim powiększeniem, jeśli chcesz zobaczyć maksymalną liczbę szczegółów - na przykład nierówności na powierzchni Księżyca lub podwójne gwiazdy. Stosowanie większego powiększenia (w zakresie maksymalnego użytecznego) ma sens tylko do oglądania jasnych, kontrastowych obiektów, a także w przypadku problemów ze wzrokiem obserwatora.

Minimalne powiększenie

Najmniejsze powiększenie jakie zapewnia teleskop. Podobnie jak w przypadku maksymalnego przyrostu użytecznego (patrz wyżej), w tym przypadku nie mówimy o absolutnie możliwym minimum, ale o granicy, powyżej której nie ma to sensu z praktycznego punktu widzenia. W tym przypadku ograniczenie to związane jest z wielkością źrenicy wyjściowej teleskopu – z grubsza mówiąc, plamki światła rzucanej przez okular na oko obserwatora. Im mniejsze powiększenie, tym większa źrenica wyjściowa; jeśli staje się większa niż źrenica oka obserwatora, to część światła nie dostaje się do oka, a sprawność układu optycznego spada. Minimalne powiększenie to powiększenie, przy którym średnica źrenicy wyjściowej teleskopu jest równa wielkości źrenicy oka ludzkiego w nocy (7–8 mm); parametr ten jest również nazywany „równym powiększeniem źrenicy”. Nieuzasadnione jest stosowanie lunety z okularami zapewniającymi mniejsze wartości powiększenia.

Z reguły do określenia równego powiększenia źrenicy stosuje się wzór D/7, gdzie D jest średnicą obiektywu w milimetrach (patrz wyżej): na przykład dla modelu z aperturą 140 mm minimalne powiększenie będzie wynosić 140/7 = 20x. Jednak ta formuła jest ważna tylko do użytku w nocy; podczas obserwacji w ciągu dnia, gdy źrenica w oku zmniejsza się, rzeczywiste wartości minimalnego wzrostu będą większe - rzędu D / 2.

Apertura

Stosunek apertury teleskopu charakteryzuje całkowitą ilość światła „przechwyconego” przez system i przekazanego do oka obserwatora. Pod względem liczb wartość przysłony to stosunek średnicy obiektywu do ogniskowej (patrz wyżej): na przykład w przypadku systemu z przysłoną 100 mm i ogniskową 1000 mm wartość przysłony będzie wynosił 100/1000 = 1/10. Wskaźnik ten jest również nazywany „aperturą względną”.

Przy wyborze według przesłony należy przede wszystkim wziąć pod uwagę cele, do których planowana jest luneta. Duża apertura względna jest bardzo wygodna w astrofotografii, ponieważ przepuszcza dużą ilość światła i umożliwia pracę przy dłuższych czasach otwarcia migawki. Ale do obserwacji wizualnych nie jest wymagany wysoki współczynnik apertury - wręcz przeciwnie, teleskopy o dłuższym ognisku (a tym samym o mniejszej aperturze) charakteryzują się niższym poziomem aberracji i umożliwiają stosowanie wygodniejszych okularów do obserwacji. Zwracamy również uwagę, że duża apertura wymaga zastosowania dużych obiektywów, co odpowiednio wpływa na wielkość, wagę i cenę teleskopu.

Zdolność przenikania

Przepuszczalność teleskopu to wielkość najsłabszych gwiazd, które można przez niego zobaczyć w idealnych warunkach obserwacji (w zenicie, w czystym powietrzu). Wskaźnik ten opisuje zdolność teleskopu do widzenia małych i słabo świecących obiektów astronomicznych.

Oceniając możliwości teleskopu dla tego wskaźnika, należy pamiętać, że im jaśniejszy obiekt, tym mniejsza jego jasność: na przykład dla Syriusza, najjaśniejszej gwiazdy na nocnym niebie, wskaźnik ten wynosi -1, a dla wielu ciemniejsza Gwiazda Polarna - około 2. Największa jasność widoczna gołym okiem to około 6,5.

Zatem im większa liczba w tej charakterystyce, tym lepiej teleskop nadaje się do pracy ze słabymi obiektami. Najskromniejsze nowoczesne modele są w stanie zobaczyć gwiazdy tak małe jak 10, a najbardziej zaawansowane systemy konsumenckie są w stanie widzieć ponad 15 – prawie 4000 razy słabsze niż minimum dla gołego oka.

Zauważ, że rzeczywista przepuszczalność jest bezpośrednio związana ze współczynnikiem powiększenia. Uważa się, że teleskopy osiągają maksimum dla tego wskaźnika, gdy używa się okularów zapewniających powiększenie rzędu 0,7D (gdzie D to średnica obiektywu w milimetrach).
Dynamika cen
Celestron NexStar 127SLT często porównują