Standardy Wi-Fi
Standardy Wi-Fi obsługiwane przez sprzęt. W dzisiejszych czasach oprócz nowoczesnych standardów
Wi-Fi 4 (802.11n),
Wi-Fi 5 (802.11ac),
Wi-Fi 6 (802.11ax) (jego odmiana
Wi-Fi 6E),
Wi-Fi 7 (802.11be) oraz
WiGig (802.11ad), można również spotkać wsparcie dla wcześniejszych wersji -
Wi- Fi 3 (802.11g), a nawet Wi-Fi 1 (802.11b). Oto bardziej szczegółowy opis każdej z tych wersji:
— Wi-Fi 3 (802.11g). Przestarzały standard, podobnie jak Wi-Fi 1 (802.11b), który odszedł w niepamięć. Był szeroko stosowany przed pojawieniem się Wi-Fi 4, obecnie jest używany głównie jako dodatek do nowszych wersji - w szczególności w celu zapewnienia kompatybilności z przestarzałym i niedrogim sprzętem. Pracuje na częstotliwości 2,4 GHz, maksymalna prędkość wymiany danych to 54 Mb/s.
— Wi-Fi 4 (802.11n). Pierwszy z powszechnie używanych standardów obsługujący 5 GHz; może pracować w tym zakresie lub w klasycznym 2,4 GHz. Warto podkreślić, że niektóre modele sprzętu Wi-Fi na ten standard wykorzystują tylko 5 GHz, dlatego są niekompatybilne z wcześniejszymi wersjami Wi-Fi. Maksymalna prędkość dla Wi-Fi 4 to 600 Mb/s; w nowoczesnych urządzeniach bezprzewodowych standard ten jest bardzo popularny, dopiero niedawno zaczął być wypierany na tej pozycji pr
...zez Wi-Fi 5.
— Wi-Fi 5 (802.11ac). Następca Wi-Fi 4, który ostatecznie przeniósł się na pasmo 5 GHz, co pozytywnie wpłynęło na niezawodność połączenia i prędkość transmisji danych: wynosi do 1,69 Gb/s na antenę i ogólnie do 6,77 Gb/s. Ponadto jest to pierwsza wersja, w której w pełni zaimplementowano technologię Beamforming (więcej informacji można znaleźć w „Funkcje i możliwości”).
— Wi-Fi 6, Wi-Fi 6E (802.11ax). Rozwinięcie Wi-Fi 5, które wprowadziło zarówno wzrost prędkości do 10 Gb/s, jak i szereg ważnych usprawnień. Jedną z najważniejszych nowości jest zastosowanie szerokiego zakresu częstotliwości – od 1 do 7 GHz; to w szczególności pozwala automatycznie wybierać najmniej obciążone pasmo częstotliwości, co pozytywnie wpływa na prędkość i niezawodność połączenia. Jednocześnie urządzenia Wi-Fi 6 mogą działać na klasycznych częstotliwościach 2,4 GHz i 5 GHz, a modyfikacja standardu Wi-Fi 6E może działać na częstotliwościach od 5,9 do 7 GHz; ogólnie uważa się, że urządzenia z obsługą Wi-Fi 6E pracują z częstotliwością 6 GHz, przy pełnej kompatybilności z wcześniejszymi standardami. Dodatkowo w tej wersji wprowadzono pewne usprawnienia dotyczące jednoczesnej pracy kilku urządzeń na tym samym kanale, w szczególności chodzi o technologię OFDMA. Dzięki temu Wi-Fi 6 daje najmniejszy ze współczesnych standardów spadek prędkości przy obciążonym powietrzu, a modyfikacja Wi-Fi 6E działająca na 6 GHz ma najmniej zakłóceń.
— Wi-Fi 7 (802.11be). Ten standard Wi-Fi zaczął być wdrażany w 2023 roku. Dzięki zastosowaniu modulacji 4096-QAM może on osiągać maksymalną teoretyczną prędkość transmisji danych do 46 Gb/s. Wi-Fi 7 obsługuje trzy pasma częstotliwości: 2,4 GHz, 5 GHz i 6 GHz. Maksymalna szerokość pasma standardu została zwiększona ze 160 MHz do 320 MHz — im szerszy kanał, tym więcej danych może on przesłać. Wśród interesujących nowości Wi-Fi 7 odnotowano opracowanie MLO (Multi-Link Operation) — za jego pomocą podłączone urządzenia wymieniają dane przy użyciu kilku kanałów i pasm częstotliwości jednocześnie, co jest szczególnie ważne w przypadku gier VR i online. Technologia Multiple Resource Unit została zaprojektowana w celu zminimalizowania opóźnień w komunikacji, gdy podłączonych jest wiele urządzeń klienckich. Nowy protokół 16x16 MIMO ma również na celu zwiększenie przepustowości przy dużej liczbie jednoczesnych połączeń, podwajając liczbę strumieni przestrzennych w porównaniu do poprzedniego standardu Wi-Fi 6.
— WiGig (802.11ad). Standard Wi-Fi wykorzystujący częstotliwość roboczą 60 GHz; prędkość przesyłania danych może wynosić do 10 Gb/s (w zależności od konkretnej wersji WiGig). Kanał 60 GHz jest znacznie mniej obciążony niż popularniejsze kanały 2,4 GHz i 5 GHz, co pozytywnie wpływa na niezawodność transmisji danych i zmniejsza opóźnienia; to ostatnie jest szczególnie ważne w grach i niektórych innych specjalistycznych zadaniach. Z drugiej strony, zwiększenie częstotliwości znacznie zmniejszyło zasięg połączenia (więcej szczegółów w punkcie „Zakres częstotliwości”), więc w praktyce ten standard nadaje się tylko do komunikacji w tym samym pomieszczeniu.
Należy pamiętać, że w praktyce prędkość przesyłania danych jest zwykle znacznie niższa od teoretycznego maksimum – zwłaszcza, gdy na tym samym kanale pracuje kilka urządzeń Wi-Fi. Warto również zauważyć, że różne standardy są ze sobą wstecznie kompatybilne (z ograniczeniem prędkości dla tego wolniejszego), pod warunkiem, że częstotliwości się pokrywają: na przykład 802.11ac może współpracować z 802.11n, lecz nie z 802.11g.Maks. prędkość przy 2.4 GHz
Maksymalna prędkość zapewniana przez urządzenie przy łączności bezprzewodowej w paśmie 2.4 GHz.
Pasmo to jest wykorzystywane w większości współczesnych standardów Wi-Fi (patrz wyżej) - jako jedno najbardziej z dostępnych lub wręcz jedyne. Teoretyczne maksimum to 600 MB/s. W rzeczywistości Wi-Fi na częstotliwości 2.4 GHz jest wykorzystywane przez dużą liczbę urządzeń klienckich, z czego wynika przeciążenie kanałów transmisji danych. Ponadto liczba anten wpływa na wydajność prędkości sprzętu. Podaną w specyfikacji prędkość można osiągnąć tylko w warunkach idealnych. W praktyce może być ona zauważalnie mniejsza (często kilkukrotnie), zwłaszcza przy obfitości urządzeń bezprzewodowych podłączonych do sprzętu. Dla zrozumienia rzeczywistych możliwości sprzętu Wi-Fi maksymalna prędkość na 2.4 GHz jest podawana w specyfikacji poszczególnych modeli. Jeśli chodzi o liczby, to ze względu na możliwości w paśmie 2.4 GHz współczesny sprzęt umownie dzieli się na modele o prędkościach
do 500 MB/s włącznie i
powyżej 500 MB/s.
Maks. prędkość przy 5 GHz
Maksymalna prędkość, obsługiwana przez urządzenie przy łączności bezprzewodowej w paśmie 5 GHz.
Pasmo to jest wykorzystywane w Wi-Fi 4, Wi-Fi 6 i Wi-Fi 6E jako jedno z dostępnych, w Wi-Fi 5 jako jedyne (patrz „Standardy Wi-Fi”). Prędkość maksymalna podawana jest w specyfikacji w celu zaznaczenia rzeczywistych możliwości konkretnego sprzętu - mogą być one zauważalnie skromniejsze od ogólnych możliwości standardu. Poza tym wszystko zależy od generacji Wi-Fi. Na przykład urządzenia obsługujące Wi-Fi 5 mogą teoretycznie przesyłać do 6928 Mb/s (przy użyciu ośmiu anten), a Wi-Fi 6 do 9607 Mb/s (przy użyciu tychże ośmiu strumieni przestrzennych). Maksymalna możliwa prędkość łączności jest osiągana w określonych warunkach i nie każdy model sprzętu Wi-Fi w pełni je spełnia. Konkretne liczby są umownie podzielone na kilka grup: wartość
do 500 MB/s jest dość skromna, wiele urządzeń obsługuje prędkości w zakresie
500 - 1000 MB/s, wskaźniki
1 - 2 GB/s można zaliczyć do średnich wartości, a najbardziej zaawansowane modele w swojej klasie zapewniają prędkość wymiany danych na poziomie
ponad 2 GB/s.
Liczba anten Wi-Fi
We współczesnym sprzęcie Wi-Fi wskaźnik ten może być różny: oprócz najprostszych urządzeń z 1 anteną, istnieją modele, w których liczba ta wynosi
2,
3,
4, a nawet
więcej. Sens stosowania kilku anten tkwi w dwóch szczegółach. Po pierwsze, jeśli na antenę przypada kilka urządzeń zewnętrznych, muszą one dzielić między sobą szerokość pasma, a rzeczywista prędkość łączności dla każdego abonenta odpowiednio spada. Po drugie, taka konstrukcja może być również wymagana przy komunikacji z jednym urządzeniem zewnętrznym - do współpracy z technologią MU-MIMO (patrz poniżej), co pozwala w pełni wykorzystać możliwości nowoczesnych standardów Wi-Fi.
W każdym razie więcej anten oznacza zwykle bardziej zaawansowane i funkcjonalne urządzenie. Z drugiej strony, parametr ten znacząco wpływa na koszt; dlatego sensowne jest poszukiwanie sprzętu z dużą liczbą anten, głównie wtedy, gdy krytyczna jest szybkość i stabilność łączności.
Liczba anten 2.4 GHz
Łączna liczba anten w routerze odpowiedzialnych za komunikację w paśmie 2,4 GHz. Aby uzyskać więcej informacji na temat liczby anten, patrz „Łączna liczba anten”, zasięgu - „Zakres częstotliwości”.
Liczba anten 5 GHz
Łączna liczba anten w routerze odpowiedzialnych za komunikację w paśmie 5 GHz. Aby uzyskać więcej informacji na temat liczby anten, patrz „Łączna liczba anten”, o paśmie - „Pasmo częstotliwości”.
Cechy dodatkowe
Dodatkowe funkcje i możliwości (głównie programowe) obsługiwane przez urządzenie. Mogą to być, w szczególności
serwer DHCP,
serwer FTP,
serwer internetowy,
serwer plików,
serwer multimediów (DLNA),
serwer wydruku,
klient torrent,
obsługa VPN,
obsługa DDNS oraz
obsługa DMZ. Oto bardziej szczegółowy opis tych funkcji:
— Serwer DHCP. Funkcja upraszczająca przydział adresów IP podłączonym do routera urządzeniom abonenckim (lub innym urządzeń Wi-Fi). Nadanie adresu IP jest niezbędne do poprawnego działania w sieciach TCP/IP (a to cały Internet i zdecydowana większość współczesnych sieci LAN). Dzięki DHCP proces ten można w pełni zautomatyzować, znacznie ułatwiając życie zarówno użytkownikom, jak i administratorom. Jednak administrator może również ustawić dodatkowe parametry DHCP - na przykład określić zakres dostępnych adresów IP (aby zapobiec błędom) lub ograniczyć użycie jednego adresu. Jeśli to konieczne, można nawet ręcznie zarejestrować określony adres dla każdego urządzenia w sieci, bez automatycznego dodawania nowych urządzeń - DHCP upraszcza również tę procedurę, ponieważ umożliwia wykonywanie wszystkich operacji na routerze bez zag
...łębiania się w ustawienia każdego urządzenia abonenckiego.
— Serwer FTP. Funkcja umożliwiająca korzystanie z urządzenia Wi-Fi do przechowywania plików i uzyskiwania do nich dostępu przez FTP. Ten protokół jest szeroko stosowany do przesyłania pojedynczych plików zarówno w sieciach lokalnych, jak i przez Internet. Właściwie jedną z głównych różnic między tą funkcją a serwerem plików (patrz poniżej) jest przede wszystkim możliwość bezproblemowej pracy przez Internet. Ponadto FTP jest popularnym protokołem standardowym i jest obsługiwany przez prawie każdy komputer, podczas gdy serwer plików może korzystać ze specjalistycznych standardów. Jeśli więc planujesz zorganizować przechowywanie plików z najprostszym i najwygodniejszym dostępem, warto wybrać urządzenie z tą funkcją. Należy zaznaczyć, że „proste” nie oznacza „niekontrolowane”: FTP umożliwia ustawienie loginu i hasła dostępu do plików, a także szyfrowanie przesyłanych danych. Same pliki mogą być przechowywane zarówno na wbudowanej pamięci urządzenia sieciowego, jak i na podłączonym do niego nośniku, takim jak pendrive lub zewnętrzny dysk twardy.
— Serwer internetowy. Możliwość wykorzystania routera jako serwera internetowego - magazynu, na którym znajduje się (jest „hostowana”) strona internetowa. Należy pamiętać, że może to być zarówno witryna internetowa, jak i zasoby wewnętrzne sieci lokalnej, przeznaczone wyłącznie do użytku osobistego lub służbowego. Umieszczenie strony na własnym sprzęcie pozwala na obejście się bez usług dostawców hostingu i zachowanie maksymalnej kontroli nad danymi na stronie oraz jej bazą techniczną. Z drugiej strony, funkcja ta znacząco wpływa na koszt sprzętu, a pod względem pamięci i mocy obliczeniowej urządzenia Wi-Fi często ustępują serwerom dedykowanym, nawet opartym na zwykłych komputerach stacjonarnych i laptopach (choć w niektórych modelach pamięć może być rozbudowana o dysk zewnętrzny). Dlatego w tym przypadku tryb serwera internetowego należy traktować głównie jako dodatkową opcję dla stosunkowo prostych zadań, które nie są związane z dużymi obciążeniami.
— Serwer plików. Możliwość wykorzystania urządzenia Wi-Fi jako serwera do przechowywania plików. Funkcja ta różni się od powyższego serwera FTP stosowanymi protokołami przesyłania danych; innymi słowy, „serwer plików” w tym przypadku jest sieciowym magazynem plików opartym na dowolnych protokołach z wyjątkiem FTP. Konkretny zestaw takich protokołów, a co za tym idzie, funkcjonalność urządzenia Wi-Fi należy wyjaśniać osobno; zwracamy tylko uwagę, że najczęściej chodzi o dostęp do plików przez sieć lokalną (do dostępu do Internetu tradycyjnie jest używany FTP), a same pliki mogą być przechowywane zarówno we własnej pamięci routera, jak i na dysku flash USB lub zewnętrznym dysku twardym.
— Serwer multimediów (DLNA). Możliwość tworzenia biblioteki multimediów za pomocą zewnętrznego dysku USB i przesyłania z niego treści do innych urządzeń w sieci domowej za pomocą kabla lub Wi-Fi. Funkcja ta jest najbardziej pożądana w przypadku transmisji wideo, plików audio i obrazów do telewizorów Smart TV i dekoderów. Ogólnie rzecz biorąc, technologia została pomyślana tak, aby możliwe było łączenie różnych urządzeń w jedną sieć i łatwa wymiana treści w tej sieci, niezależnie od modelu i producenta poszczególnych urządzeń. Wiele nowoczesnych smartfonów i tabletów, urządzeń ekosystemu inteligentnego domu itp. obsługuje DLNA.
— Serwer wydruku. Możliwość obsługi urządzenia jako serwera wydruku - komputera sterującego drukarką. Funkcja ta pozwala zamienić zwykłą drukarkę na drukarkę sieciową: wszyscy użytkownicy sieci będą mogli wysyłać zadania drukowania przez serwer wydruku, a taki serwer będzie również zapewniał szereg dodatkowych funkcji. Tak więc wysłane zadania będą na nim przechowywane, dopóki nie zostaną ukończone lub anulowane, niezależnie od tego, czy komputer, z którego zostały wysłane, jest włączony; można przewidzieć zdalne sterowanie kolejką wydruku itp. A użycie routera (lub innego podobnego urządzenia) w tej roli jest wygodne, ponieważ router z reguły jest włączony i dostępny przez cały czas.
— Klient sieci torrent. Obecność w urządzeniu własnego klienta sieci torrent lub innego protokołu wymiany danych (HTTP, FTP itp.). Funkcja ta umożliwia pracę z sieciami wymiany plików, które są zbudowane na zasadzie „każdy jest serwerem i klientem”: pobrane informacje znajdują się nie na osobnym komputerze w sieci, lecz na komputerach tych samych użytkowników. Przy tym ten sam plik można otworzyć do pobrania w kilku miejscach, a klient torrent pobiera różne jego części z różnych źródeł jednocześnie - to znacznie zwiększa prędkość. Korzystanie z klienta torrent na urządzeniu jest wygodne z dwóch powodów. Po pierwsze, pozwala odciążyć podstawowe komputery użytkowników - to ważna zaleta, biorąc pod uwagę, że klient torrent może zużywać dużo zasobów, zwłaszcza przy dużej liczbie jednoczesnych pobrań/udostępnień. Po drugie, urządzenia sieciowe zwykle pozostają włączone przez cały czas, umożliwiając kontynuowanie pobierania i wysyłania danych nawet wtedy, gdy komputery i laptopy użytkowników są wyłączone. Należy jednak wziąć pod uwagę, że pomimo obecności takiej funkcjonalności w urządzeniach, otwarte zamieszczanie treści w sieciach torrentowych może naruszać prawa autorskie. Dlatego używaj klientów torrent zgodnie z przepisami prawa.
— Obsługa VPN (Virtual Private Network). Początkowo VPN to funkcja, która umożliwia łączenie urządzeń fizycznie znajdujących się w różnych sieciach w jedną sieć wirtualną. Połączenie jest nawiązywane przez Internet, ale dane są szyfrowane, aby zapobiec nieautoryzowanemu dostępowi do nich. Jednak routery, punkty dostępowe i sprzęt MESH (patrz „Typ urządzenia”) często wykorzystują nieco inny format pracy: łączenie się z Internetem przez oddzielny serwer VPN, dzięki czemu cały ruch zewnętrzny z sieci obsługiwanej przez router przechodzi przez ten serwer. To połączenie ma wiele zalet. Po pierwsze, dodatkowe szyfrowanie ruchu zwiększa bezpieczeństwo pracy. Po drugie, „na zewnątrz” w takich przypadkach to nie rzeczywisty adres IP użytkownika jest widoczny, ale adres serwera VPN, a w ustawieniach można ustawić adres odnoszący się do prawie każdego kraju na świecie. Ma to również pozytywny wpływ na bezpieczeństwo, a także umożliwia ominięcie regionalnych ograniczeń dotyczących odwiedzania niektórych witryn i dostępu do usług.
Zwróć uwagę, że VPN można zapewnić również na poszczególnych urządzeniach w sieci (na przykład za pomocą narzędzi w niektórych przeglądarkach internetowych); jednak router VPN umożliwia wszystkim urządzeniom sieciowym pracę w tym formacie, niezależnie od tego, czy obsługują one VPN, czy nie. Jest to szczególnie wygodne w szczególności na telewizorach Smart TV (w celu uzyskania dostępu do niektórych usług wideo, takich jak Netflix) oraz na konsolach PS i Xbox (w celu obejścia regionalnych ograniczeń w niektórych grach). Z drugiej strony, należy mieć na uwadze, że ustanowienie takiego połączenia na routerze może być dość trudne, prędkość połączenia podczas pracy przez VPN może znacznie spaść, a włączenie i wyłączenie tej funkcji na routerze jest zwykle trudniejsze niż na urządzeniach użytkowników.
— DDNS. Urządzenie obsługuje funkcję DDNS - przypisanie stałej nazwy domeny do urządzenia ze zmieniającym się (dynamicznym) adresem IP. Dla elektroniki sieciowej kluczowy jest adres IP, to on pozwala sprzętowi na wysyłanie pakietów danych dokładnie do żądanego urządzenia. Jednak takie adresy są sekwencjami liczb, które są słabo zapamiętywane przez ludzi. W związku z tym pojawiły się nazwy domen - w Internecie są to adresy internetowe (np. ek.ua lub e-katalog.ru), w sieci lokalnej - nazwy poszczególnych urządzeń (np. „Laptop roboczy” czy „Komputer Sergiusza"). Zarówno w Internecie, jak i w sieciach lokalnych za połączenie między nazwą domeny a adresem IP odpowiada tzw. serwery DNS: dla każdej domeny rejestrowany jest własny adres IP w bazie danych takiego serwera. Jednak ze względów technicznych często zdarzają się sytuacje, gdy router musi używać dynamicznego (zmiennego) adresu IP; w związku z tym, aby informacje były stale dostępne dla tej samej nazwy domeny, konieczna jest aktualizacja danych na serwerze DNS przy każdej zmianie adresu IP. Dokładnie to zapewnia funkcja DDNS.
— DMZ. Początkowo DMZ to funkcja, która pozwala na stworzenie w sieci lokalnej segmentu z wolnym dostępem z zewnątrz. Od reszty sieci ten segment (nazywany DMZ - „strefa zdemilitaryzowana”) jest oddzielony zaporą sieciową, która dopuszcza tylko specjalnie dozwolony ruch zewnętrzny. Zapewnia to dodatkową ochronę przed atakami z zewnątrz: w takich przypadkach cierpi przede wszystkim strefa zdemilitaryzowana, dostęp atakującego do pozostałych zasobów sieciowych jest znacznie utrudniony. Jednym z najpopularniejszych sposobów wykorzystania tej funkcji jest organizacja dostępu do usług internetowych, których serwery fizycznie znajdują się we wspólnej sieci lokalnej firmy. Warto jednak zaznaczyć, że w niektórych niedrogich routerach DMZ może oznaczać tryb DMZ-host, który nie zapewnia żadnej dodatkowej ochrony i jest wykorzystywany do zupełnie innych celów (głównie do rozgłaszania wszystkich portów do innego urządzenia sieciowego). Więc konkretny format DMZ warto wyjaśnić osobno, zwłaszcza jeśli kupujesz urządzenie z niższej półki cenowej.