Tryb nocny
Polska
Katalog   /   Komputery   /   Sprzęt sieciowy   /   Urządzenia sieciowe

Porównanie Tenda AC9 vs Tenda AC6

Dodaj do porównania
Tenda AC9
Tenda AC6
Tenda AC9Tenda AC6
Porównaj ceny 1Porównaj ceny 10
Opinie
TOP sprzedawcy
Główne
Dwuzakresowe Wi-Fi. Cztery anteny zewnętrzne. Obsługuje technologie MU-MIMO i Beamforming +. Tryb inteligentny. Zdalne sterowanie za pomocą aplikacji mobilnej.
Rodzaj urządzeniarouterrouter
Wejście danych (port WAN)
Ethernet (RJ45)
Wi-Fi
Ethernet (RJ45)
Wi-Fi
Połączenie Wi-Fi
Standardy Wi-Fi
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Zakres częstotliwości pracy
2.4 GHz
5 GHz
2.4 GHz
5 GHz
Pasma pracydwuzakresowy (2,4 GHz i 5 GHz)dwuzakresowy (2,4 GHz i 5 GHz)
Maks. prędkość przy 2.4 GHz300 Mb/s300 Mb/s
Maks. prędkość przy 5 GHz836 Mb/s867 Mb/s
Porty
WAN
1 port
1 Gb/s
1 port
100 Mb/s
LAN
4 porty
1 Gb/s
3 porty
100 Mb/s
Liczba portów USB 2.01 szt.
Antena i nadajnik
Liczba anten Wi-Fi2 szt.4 szt.
Typ antenyzewnętrznazewnętrzna
MU-MIMO
Zysk energetyczny3 dBi5 dBi
Liczba anten 2.4 GHz2 szt.
Liczba anten 5 GHz2 szt.
Liczba anten na 2.4 / 5 GHz2 szt.
Moc nadajnika23 dBm23 dBm
Moc sygnału 2.4 GHz20 dBm
Moc sygnału 5 GHz23 dBm
Funkcje
Funkcje i możliwości
NAT
tryb mostu
repeater
 
zapora sieciowa (Firewall)
NAT
tryb mostu
repeater
Beamforming
zapora sieciowa (Firewall)
Cechy dodatkowe
serwer DHCP
serwer FTP
serwer plików
serwer wydruku
obsługa VPN
obsługa DDNS
obsługa DMZ
serwer DHCP
 
 
 
obsługa VPN
obsługa DDNS
obsługa DMZ
Bezpieczeństwo
Szyfrowanie
WPA
WEP
WPA2
WPA
WEP
WPA2
Dane ogólne
Wymiary226x180x77 mm220x142x49 mm
Kolor obudowy
Data dodania do E-Katalogluty 2017luty 2017
Porównanie cen

Maks. prędkość przy 5 GHz

Maksymalna prędkość, obsługiwana przez urządzenie przy łączności bezprzewodowej w paśmie 5 GHz.

Pasmo to jest wykorzystywane w Wi-Fi 4, Wi-Fi 6 i Wi-Fi 6E jako jedno z dostępnych, w Wi-Fi 5 jako jedyne (patrz „Standardy Wi-Fi”). Prędkość maksymalna podawana jest w specyfikacji w celu zaznaczenia rzeczywistych możliwości konkretnego sprzętu - mogą być one zauważalnie skromniejsze od ogólnych możliwości standardu. Poza tym wszystko zależy od generacji Wi-Fi. Na przykład urządzenia obsługujące Wi-Fi 5 mogą teoretycznie przesyłać do 6928 Mb/s (przy użyciu ośmiu anten), a Wi-Fi 6 do 9607 Mb/s (przy użyciu tychże ośmiu strumieni przestrzennych). Maksymalna możliwa prędkość łączności jest osiągana w określonych warunkach i nie każdy model sprzętu Wi-Fi w pełni je spełnia. Konkretne liczby są umownie podzielone na kilka grup: wartość do 500 MB/s jest dość skromna, wiele urządzeń obsługuje prędkości w zakresie 500 - 1000 MB/s, wskaźniki 1 - 2 GB/s można zaliczyć do średnich wartości, a najbardziej zaawansowane modele w swojej klasie zapewniają prędkość wymiany danych na poziomie ponad 2 GB/s.

WAN

Port WAN charakteryzuje zdolność urządzenia do odbioru sygnału przewodowego. Spotyka się modele z jednym portem bądź dwoma portami WAN, a w rzadkich przypadkach może to być większa liczba podłączanych dostawców. Taka rozszerzona liczba złączy WAN wpływa na koszt i w związku z tym występuje częściej wśród routerów przeznaczonych do zastosowań profesjonalnych.

Jeśli chodzi o prędkość, przy wyborze urządzenia priorytetem jest prędkość wyjściowego portu LAN lub Wi-Fi. Natomiast szybsze porty WAN ( 1 Gb/s, 2.5 Gb/s, 5 Gb/s, 10 Gb/s) pozwalają na rozłożenie obciążenia na kilka wyjść jednocześnie bez obniżania wskaźników szybkości, jak to może mieć miejsce w przypadku portu WAN 100 Mb/s.

LAN

LAN w tym przypadku oznacza standardowe złącza sieciowe (znane jako RJ-45) przeznaczone do przewodowego połączenia lokalnych urządzeń sieciowych – komputerów, serwerów, dodatkowych punktów dostępowych itp. Liczba portów odpowiada liczbie urządzeń, do których można bezpośrednio podłączyć sprzęt drogą przewodową.

Pod względem prędkości zdecydowanie najpopularniejsze opcje to 100 Mb/s (Fast Ethernet) i 1 Gb/s (Gigabit Ethernet). Jednocześnie dzięki rozwojowi technologii powstaje coraz więcej urządzeń gigabitowych, choć w praktyce prędkość ta ma krytyczne znaczenie tylko przy przesyłaniu dużej ilości informacji. Jednocześnie niektóre modele, oprócz standardowej szybkości głównych portów LAN, mogą posiadać port LAN 2,5 Gb/s, 5 Gb/s, a nawet 10 Gb/s przy zwiększonej przepustowości.

Liczba portów USB 2.0

Liczba portów USB 2.0 przewidzianych w konstrukcji urządzenia.

USB pełni w tym przypadku rolę uniwersalnego interfejsu do podłączania urządzeń peryferyjnych do routera. Obsługiwane urządzenia USB i sposób ich używania mogą się różnić. Przykłady obejmują pracę z dyskiem flash pełniącym rolę urządzenia magazynującego do pracy w trybie FTP lub w trybie serwera plików (patrz „Funkcje/Możliwości”), łączenie się z drukarką w trybie serwera wydruku (patrz ibid.), podłączanie modemu 3G (patrz „Wejście danych (port WAN)”) itp.

Mianowicie USB 2.0 umożliwia przesyłanie danych z prędkością do 480 Mb/s. To zauważalnie mniej niż w bardziej zaawansowanych standardach (począwszy od opisanego poniżej USB 3.2 Gen1), a zasilanie takich złączy jest niskie. Jednak nawet takie cechy często wystarczają, biorąc pod uwagę specyfikę korzystania z urządzeń Wi-Fi. Dodatkowo do portu USB 2.0 można podłączyć peryferia do nowszych wersji - najważniejsze, żeby zasilanie było wystarczające. Dlatego chociaż ten standard jest uważany za przestarzały, nadal jest szeroko stosowany w nowoczesnym sprzęcie bezprzewodowym. Istnieją nawet modele, które zapewniają 2 lub nawet więcej portów USB 2.0; pozwala to na jednoczesne korzystanie z kilku urządzeń zewnętrznych - na przykład modemu 3G i pendrive'a.

Liczba anten Wi-Fi

We współczesnym sprzęcie Wi-Fi wskaźnik ten może być różny: oprócz najprostszych urządzeń z 1 anteną, istnieją modele, w których liczba ta wynosi 2, 3, 4, a nawet więcej. Sens stosowania kilku anten tkwi w dwóch szczegółach. Po pierwsze, jeśli na antenę przypada kilka urządzeń zewnętrznych, muszą one dzielić między sobą szerokość pasma, a rzeczywista prędkość łączności dla każdego abonenta odpowiednio spada. Po drugie, taka konstrukcja może być również wymagana przy komunikacji z jednym urządzeniem zewnętrznym - do współpracy z technologią MU-MIMO (patrz poniżej), co pozwala w pełni wykorzystać możliwości nowoczesnych standardów Wi-Fi.

W każdym razie więcej anten oznacza zwykle bardziej zaawansowane i funkcjonalne urządzenie. Z drugiej strony, parametr ten znacząco wpływa na koszt; dlatego sensowne jest poszukiwanie sprzętu z dużą liczbą anten, głównie wtedy, gdy krytyczna jest szybkość i stabilność łączności.

MU-MIMO

Obsługa przez urządzenie technologii MU-MIMO - multi-user multi-threaded I/O.

Połączenie wielostrumieniowe jest realizowane za pomocą kilku anten zarówno w urządzeniu nadawczym, jak i odbiorczym. Pozwala to zwiększyć przepustowość kanału, a także poprawić ogólną jakość i stabilność połączenia. A termin „multi-user” zwykle oznacza, że sprzęt Wi-Fi może współpracować jednocześnie z kilkoma urządzeniami zewnętrznymi obsługującymi multi-streaming (MIMO). Jedynymi wyjątkami są adaptery Wi-Fi (patrz „Rodzaj urządzenia”) – chodzi im bardziej o możliwość jak najefektywniejszej interakcji z routerem/punktem dostępowym, który również wykorzystuje MU-MIMO.

Zysk energetyczny

Zysk energetyczny zapewniany przez każdą antenę urządzenia; jeśli w konstrukcji przewidziano anteny o różnych specyfikacjach (typowym przykładem są anteny zewnętrzne i wewnętrzne), wówczas informacja jest z reguły podawana z uwzględnieniem najwyższej wartości.

Wzmocnienie sygnału w tym przypadku zapewnia się przez zawężenie wzoru promieniowania - podobnie jak w latarkach z regulowaną szerokością wiązki, zmniejszenie tej szerokości zwiększa zasięg świecenia. Najprostsze anteny dookólne zawężają sygnał głównie w płaszczyźnie pionowej, „spłaszczając” obszar zasięgu, tak że staje się on jak pozioma tarcza. Z kolei anteny kierunkowe (głównie w specjalistycznych punktach dostępowych, patrz „Typ urządzenia”) tworzą wąską wiązkę, która pokrywa bardzo mały obszar, ale daje bardzo solidne wzmocnienie.

W szczególności zysk energetyczny opisuje, jak silny jest sygnał uzyskiwany w głównym kierunku anteny w porównaniu z idealną anteną, która równomiernie rozprowadza sygnał we wszystkich kierunkach. Wraz z mocą nadajnika (patrz poniżej) określa to całkowitą moc sprzętu i odpowiednio wydajność i zasięg komunikacji. Właściwie, aby określić całkowitą moc, wystarczy dodać zysk energetyczny w dBi do mocy nadajnika w dBm; w tym przypadku dBi i dBm można uznać za te same jednostki (decybele).

Generalnie takie dane są rzadko potrzebne zwykłemu użytkownikowi, ale mogą się przydać w niektórych sytuacjach, z którymi muszą sobie radzić specjaliści. Szczegółowe metody ob...liczeń dla takich sytuacji można znaleźć w dedykowanych źródłach; tutaj podkreślamy, że nie zawsze ma sens gonienie za dużym zyskiem energetycznym anteny. Po pierwsze, jak omówiono powyżej, osiąga się to kosztem zawężenia obszaru zasięgu, co może być niewygodne; po drugie, zbyt silny sygnał jest również często niepożądany, więcej informacji można znaleźć w punkcie „Moc nadajnika”.

Liczba anten 2.4 GHz

Łączna liczba anten w routerze odpowiedzialnych za komunikację w paśmie 2,4 GHz. Aby uzyskać więcej informacji na temat liczby anten, patrz „Łączna liczba anten”, zasięgu - „Zakres częstotliwości”.

Liczba anten 5 GHz

Łączna liczba anten w routerze odpowiedzialnych za komunikację w paśmie 5 GHz. Aby uzyskać więcej informacji na temat liczby anten, patrz „Łączna liczba anten”, o paśmie - „Pasmo częstotliwości”.
Dynamika cen
Tenda AC9 często porównują
Tenda AC6 często porównują