Polska
Katalog   /   Komputery   /   Podzespoły   /   Płyty główne

Porównanie MSI Z370 GAMING PLUS vs Gigabyte Z370 HD3 rev. 1.0

Dodaj do porównania
MSI Z370 GAMING PLUS
Gigabyte Z370 HD3 rev. 1.0
MSI Z370 GAMING PLUSGigabyte Z370 HD3 rev. 1.0
od 1 080 zł
Produkt jest niedostępny
od 260 zł
Produkt jest niedostępny
TOP sprzedawcy
Przeznaczeniedo gier (overclocking)do gier (overclocking)
SocketIntel LGA 1151 v2Intel LGA 1151 v2
FormatATXATX
Fazy zasilania67
Radiator VRM
Podświetlenie LED
Synchronizacja podświetleniaMSI Mystic Light Sync
Wymiary (WxS)305x244 mm305x225 mm
Chipset
ChipsetIntel Z370Intel Z370
BIOSAmiAmi
Obsługa DualBIOS
UEFI BIOS
Pamięć RAM
DDR44 banki(ów)4 banki(ów)
Rodzaj obsługiwanej pamięciDIMMDIMM
Architektura pamięci2 kanałowa2 kanałowa
Maksymalna częstotliwość taktowania4000 MHz4000 MHz
Maks. wielkość pamięci64 GB64 GB
Obsługa XMP
Interfejsy dyskowe
SATA 3 (6 Gb/s)6 szt.6 szt.
Złącze M.21 szt.1 szt.
Interfejs M.21xSATA/PCI-E 4x1xSATA/PCI-E 4x
Zintegrowany kontroler RAID
 /RAID 0, RAID 1, RAID 5, RAID 10/
 /RAID 0, RAID 1, RAID 5, RAID 10/
Gniazda kart rozszerzeń
Liczba gniazd PCI-E 1x4 szt.3 szt.
Liczba gniazd PCI-E 16x2 szt.3 szt.
Tryby PCI-E16x/4x16x/4x/4x
Obsługa PCI Express3.03.0
Obsługa CrossFire (AMD)
Stalowe złącza PCI-E
Złącza na płycie głównej
USB 2.02 szt.2 szt.
USB 3.2 gen12 szt.2 szt.
Wyjścia wideo
Wyjście D-Sub (VGA)
Wyjście DVIDVI-DDVI-D
Wyjście HDMI
DisplayPort
Zintegrowany układ audio
Układ audioRealtek ALC892Realtek ALC892
Dźwięk (liczba kanałów)7.17.1
Interfejsy sieciowe
LAN (RJ-45)1 Gb/s1 Gb/s
Liczba portów LAN1 szt.1 szt.
Kontroler LANIntel I219-VIntel GbE
Złącza na tylnym panelu
USB 2.02 szt.2 szt.
USB 3.2 gen14 szt.4 szt.
PS/21 szt.1 szt.
Złącza zasilania
Główne złącze zasilania24 pin24 pin
Zasilanie procesora8 pin8 pin
Liczba złączy wentylatorów CPU6 szt.4 szt.
Data dodania do E-Katalogpaździernik 2017wrzesień 2017

Fazy zasilania

Liczba faz zasilania procesora przewidzianych na płycie głównej.

W bardzo uproszczony sposób fazy można opisać jako bloki elektroniczne o specjalnej konstrukcji, przez które zasilanie jest dostarczane do procesora. Zadaniem takich bloków jest optymalizacja tego zasilania, w szczególności minimalizacja skoków mocy przy zmianie obciążenia procesora. Generalnie im więcej faz, tym mniejsze obciążenie każdego z nich, stabilniejsze zasilanie i bardziej wytrzymała elektronika płyty głównej. Im mocniejszy jest procesor i im więcej ma rdzeni, tym więcej faz wymaga; liczba ta bardziej wrośnie również, jeśli planowane jest podkręcenie procesora. Na przykład w przypadku zwykłego czterordzeniowego chipa często wystarczają tylko cztery fazy, a już dla podkręconego możesz ich potrzebować co najmniej ośmiu. Właśnie z tego powodu u wydajnych procesorów mogą wystąpić problemy, gdy są używane niedrogie płyty główne z małą liczbą faz.

Szczegółowe zalecenia dotyczące wyboru liczby faz dla poszczególnych serii i modeli procesorów można znaleźć w specjalistycznych źródłach (w tym w dokumentacji samego procesora). Tutaj należy pamiętać, że przy dużej liczbie faz na płycie głównej (więcej niż 8) niektóre z nich mogą być wirtualne. W tym celu rzeczywiste bloki elektroniczne są uzupełniane podwójnymi lub nawet potrójnymi, co formalnie zwiększa liczbę faz: na przykład 12 zadeklarowanych faz może reprezentować 6 fizycznych bloków z podwajaczami. Jednak fazy wirtualne są znacznie gor...sze od rzeczywistych pod względem swoich możliwości - w praktyce są tylko dodatkami, które nieznacznie poprawiają charakterystykę faz realnych. Powiedzmy, że w naszym przypadku bardziej poprawne jest mówienie nie o dwunastu, ale tylko o sześciu (aczkolwiek ulepszonych) fazach. Na te detale należy zwrócić uwagę przy wyborze płyty głównej.

Synchronizacja podświetlenia

Technologia synchronizacji przewidziana na płycie z podświetleniem LED (patrz wyżej).

Sama synchronizacja pozwala „dopasować” podświetlenie płyty głównej do podświetlenia innych elementów systemu - obudowy, karty graficznej, klawiatury, myszy itp. Dzięki tej koordynacji wszystkie elementy mogą synchronicznie zmieniać kolor, jednocześnie się włączać / wyłączać itp. Specyficzne cechy działania takiego podświetlenia zależą od zastosowanej technologii synchronizacji i z reguły każdy producent ma swoje własne (Mystic Light Sync od MSI, RGB Fusion od Gigabyte itp.). Od tego zależy również kompatybilność komponentów: wszystkie muszą obsługiwać tę samą technologię. Najłatwiej więc osiągnąć kompatybilność z podświetleniem, montując komponenty od jednego producenta.

Wymiary (WxS)

Wymiary płyty głównej na wysokość i szerokość. Zakłada się, że tradycyjne rozmieszczenie płyt głównych jest pionowe, dlatego w tym przypadku jeden z wymiarów nazywa się nie długością, jednak wysokością.

Rozmiary płyt głównych zależą w dużej mierze od ich współczynników kształtu (patrz wyżej), jednak rozmiar konkretnej płyty może nieco różnić się od standardu przyjętego dla tego współczynnika kształtu. Ponadto zwykle łatwiej jest wyjaśnić wymiary zgodnie z charakterystyką konkretnej płyty głównej niż szukać lub przywoływać ogólne informacje na temat współczynnika kształtu. Dlatego dane dotyczące rozmiaru są podawane nawet dla modeli, które są w pełni zgodne ze standardem.

Trzeci wymiar – grubość – jest z wielu powodów uważany za mniej ważny, dlatego często jest pomijany.

Obsługa DualBIOS

Obsługa przez płytę główną technologii DualBIOS.

Awarie i błędy w BIOS-ie (patrz BIOS) to jedne z najpoważniejszych problemów, jakie mogą pojawić się na współczesnym komputerze - nie tylko sprawiają, że komputer jest nieefektywny, ale także są bardzo trudne do naprawienia. Technologia DualBIOS została zaprojektowana, aby ułatwić walkę z tego rodzaju problemami. Płyty główne wykonane przy użyciu tej technologii mają dwa mikroukłady do nagrywania BIOS-u: pierwszy mikroukład zawiera główną wersję BIOS-u, która jest używana do uruchamiania systemu w trybie normalnym, drugi zawiera kopię zapasową BIOS-u w oryginalnej (fabrycznej) konfiguracji. Mikroukład zapasowy zaczyna działać po wykryciu błędu w głównym systemie BIOS: w przypadku wykrycia błędu w kodzie programu przywracany jest do oryginalnej wersji fabrycznej, ale w przypadku awarii sprzętowej mikroukład zapasowy przejmuje kontrolę nad system, zastępując główny. Pozwala to na utrzymanie systemu w stanie gotowości nawet w przypadku poważnych problemów z BIOS-em bez konieczności uciekania się do skomplikowanych procedur przywracania.

Liczba gniazd PCI-E 1x

Liczba gniazd PCI-E (PCI-Express) 1x zainstalowanych na płycie głównej. Dostępne są płyty główne z 1 slotem PCI-E 1x, 2 slotami PCI-E 1x, 3 portami PCI-E 1x i jeszcze więcej.

Magistrala PCI Express służy do łączenia różnych kart rozszerzeń - sieciowych i dźwiękowych, kart graficznych, tunerów telewizyjnych, a nawet dysków SSD. Liczba w tytule wskazuje na liczbę torów PCI-E (kanałów transmisji danych) obsługiwanych przez to gniazdo; im więcej linii, tym wyższa przepustowość. W związku z tym PCI-E 1x jest podstawową, najwolniejszą wersją tego interfejsu. Szybkość przesyłania danych dla takich gniazd zależy od wersji PCI-E (patrz „Obsługa PCI Express”): w szczególności jest to nieco mniej niż 1 GB/s dla wersji 3.0 i nieco mniej niż 2 GB/s dla 4.0.

Osobno podkreślamy, że ogólna zasada dla PCI-E jest następująca: płyta musi być podłączona do gniazda o tej samej lub większej liczbie linii. Dzięki temu tylko karty na jednej linii będą kompatybilne z PCI-E 1x.

Liczba gniazd PCI-E 16x

Liczba gniazd PCI-E (PCI-Express) 16x znajdujących się na płycie głównej.

Magistrala PCI Express służy do podłączania różnych kart rozszerzeń - sieciowych i dźwiękowych, kart graficznych, tunerów telewizyjnych, a nawet dysków SSD. Cyfra w nazwie oznacza liczbę linii PCI-E (kanałów transmisji danych) obsługiwanych przez to gniazdo; im więcej linii, tym wyższa przepustowość. 16 linii to największa liczba występująca w nowoczesnych gniazdach i płytach PCI Express (możliwości techniczne dla większej liczby istnieją, jednak złącza byłyby zbyt nieporęczne). W związku z tym te gniazda są najszybsze: ich prędkość transmisji danych wynosi 16 GB/s dla wersji PCI-E 3.0 i 32 GB/s dla wersji 4.0 (więcej informacji na temat wersji można znaleźć w sekcji „Obsługa PCI Express”).

Osobno należy pamiętać, że to PCI-E 16x jest uważane za optymalne złącze do podłączania kart graficznych. Wybierając jednak płytę główną z kilkoma takimi gniazdami, warto zastanowić się nad obsługiwanymi przez nią trybami PCI-E (patrz niżej). Ponadto pamiętaj, że interfejs PCI Express umożliwia podłączenie kart z mniejszą liczbą linii do złączy z większą liczbą linii. W ten sposób PCI-E 16x będzie pasować do każdej karty PCI Express.

Warto też wspomnieć, że nowoczesne płyty główne mają ponadgabarytowe gniazda - w szczególności PCI-E 4x, odpowiadające rozmiarem PCI-E 16x. Jednak rodzaj gniazd PCI-E w naszym katalogu określa się na podstawie rzeczywistej przepustowości; więc pod PCI-E...16x kryją się tylko gniazda obsługujące prędkość na poziomie 16x.

Tryby PCI-E

Tryby pracy slotów PCI-E 16x obsługiwane przez płytę główną.

Aby uzyskać więcej informacji na temat tego interfejsu, patrz wyżej, a dane dotyczące trybów określa się w przypadku, jeśli na płycie jest kilka gniazd PCI-E 16x. Dane te określają, z jaką prędkością te gniazda mogą pracować przy jednoczesnym podłączaniu do nich kart rozszerzeń, ile linii może używać każdy z nich. Faktem jest, że całkowita liczba linii PCI-Express na każdej płycie głównej jest ograniczona i zwykle nie wystarczają one do jednoczesnej pracy wszystkich 16-kanałowych gniazd z pełną mocą. W związku z tym, podczas jednoczesnej pracy, prędkość nieuchronnie musi zostać ograniczona: na przykład zapis 16x / 4x / 4x oznacza, że płyta główna ma trzy 16-kanałowe gniazda, ale jeśli trzy karty graficzne są do nich podłączone jednocześnie, to drugie i trzecie gniazdo będą w stanie zapewnić prędkość tylko na poziomie PCI-E 4x. W związku z tym dla innej liczby slotów i liczby cyfr będą odpowiednie. Istnieją również karty z kilkoma trybami - na przykład 16x / 0x / 4 i 8x / 8x / 4x (0x oznacza, że slot w ogóle przestaje działać).

Należy zwrócić uwagę na parametr ten głównie podczas instalowania kilku kart graficznych jednocześnie: w niektórych przypadkach (na przykład podczas korzystania z technologii SLI), aby karty graficzne działały poprawnie, muszą być podłączone do gniazd z tą samą prędkością.

Stalowe złącza PCI-E

Obecność na płycie głównej wzmocnionych stalowych złączy PCI-E.

Takie złącza można znaleźć głównie w gamingowych (patrz „Przeznaczenie”) i innych zaawansowanych typach płyt głównych zaprojektowanych do korzystania z wydajnych kart graficznych. Gniazda PCI-E 16x są zwykle wykonane ze stali, przeznaczone tylko dla takich kart graficznych; oprócz samego gniazda, jego mocowanie do płyty ma również wzmocnioną konstrukcję.

Ta cecha oferuje dwie kluczowe zalety w porównaniu z tradycyjnymi plastikowymi złączami. Po pierwsze, pozwala na instalację nawet dużych i ciężkich kart graficznych tak bezpiecznie, jak to możliwe, bez ryzyka uszkodzenia gniazda lub karty. Po drugie, metalowa wtyczka działa jak ekran ochronny i zmniejsza prawdopodobieństwo wystąpienia zakłóceń; jest to szczególnie przydatne w przypadku korzystania z wielu kart graficznych zainstalowanych obok siebie, "side-by-side".

Wyjście D-Sub (VGA)

Obecność na płycie głównej własnego wyjścia D-Sub (VGA).

Takie wyjście jest przeznaczone do transmisji wideo ze zintegrowanej karty graficznej (patrz wyżej) lub procesora ze zintegrowaną grafiką (podkreślamy, że niemożliwe jest przesłanie do niego sygnału z dedykowanej karty graficznej przez chipset płyty głównej). Jeśli chodzi o VGA, jest to standard analogowy pierwotnie stworzony dla monitorów CRT. Nie wyróżnia się jakością obrazu, prawie nie nadaje się do rozdzielczości wyższych niż 1280x1024 i nie zapewnia transmisji dźwięku, dlatego jest powszechnie uważany za przestarzały. Jednak ten rodzaj wejścia jest nadal używany w samodzielnych monitorach, telewizorach, projektorach itp.; tak więc wśród płyt głównych można znaleźć modele z takimi wyjściami.
MSI Z370 GAMING PLUS często porównują
Gigabyte Z370 HD3 rev. 1.0 często porównują