Tryb nocny
Polska
Katalog   /   Komputery   /   Komputery stacjonarne

Porównanie Impression CoolPlay I2216 vs HP ProDesk 490 G3 M4Z49AV

Dodaj do porównania
Impression CoolPlay (I2216)
HP ProDesk 490 G3 (M4Z49AV)
Impression CoolPlay I2216HP ProDesk 490 G3 M4Z49AV
od 2 723 zł
Produkt jest niedostępny
od 1 631 zł
Produkt jest niedostępny
TOP sprzedawcy
Rodzajstacjonarnystacjonarny
Procesor
ChipsetIntel H110Intel H170
Rodzajdesktopowydesktopowy
SeriaCore i5Core i5
Model64006500
Liczba rdzeni44
Częstotliwość taktowania2.7 GHz3.2 GHz
Częstotliwość TurboBoost / TurboCore3.3 GHz3.6 GHz
Pamięć RAM
Pojemność pamięci RAM8 GB4 GB
Rodzaj pamięciDDR4DDR4
Częstotliwość taktowania2133 MHz2133 MHz
Liczba banków24
Karta graficzna
Rodzaj karty graficznejzintegrowanazintegrowana
Model karty graficznejHD Graphics 530HD Graphics 530
Dysk
Rodzaj dyskuHDD+SSDHDD
Pojemność dysku1000 GB500 GB
Prędkość obrotowa5400 obr./min7200 obr./min
Pojemność drugiego dysku120 GB
Liczba wewnętrznych zatok 3.5"2
Tylny panel
Złącza
 
DVI
 
VGA
 
Port COM (RS-232)
PS/22 szt.
USB 2.04 szt.2 szt.
USB 3.2 gen14 szt.
USB 3.2 gen22 szt.
Przedni panel
NapędDVD-RWDVD-RW
Liczba zewnętrznych zatok 5.25"3 szt.
Liczba zewnętrznych zatok 3.5"1 szt.
mini-Jack (3,5 mm)
USB 2.02 szt.
USB 3.2 gen12 szt.
Multimedia
LAN (RJ-45)100 Mb/s1 Gb/s
Wi-Fibrakbrak
Dane ogólne
Moc zasilacza500 W300 W
Preinstalowany system operacyjnyDOSDOS
Materiał obudowystalstal
Wymiary (WxSxG)375x175x410 mm355x165x358.8 mm
Waga8 kg7.05 kg
Data dodania do E-Katalogmaj 2016luty 2018

Chipset

Model chipsetu używanego w standardowej konfiguracji komputera.

Chipset można opisać jako zestaw układów, które umożliwiają współpracę procesora, pamięci RAM, urządzeń wejścia/wyjścia i tym podobnych. To właśnie ten chipset jest podstawą każdej płyty głównej. Znając model chipsetu, możesz znaleźć i ocenić jego szczegółowe cechy; większość użytkowników nie potrzebuje takich informacji, ale dla specjalistów może to być bardzo przydatne.

Model

Konkretny model procesora zainstalowanego w komputerze, a raczej jego oznaczenie w serii (patrz „Procesor”). Pełna nazwa modelu składa się z nazwy serii i tego oznaczenia - na przykład Intel Core i3 3220; znając tę nazwę, możesz znaleźć szczegółowe informacje o procesorze (specyfikacja, recenzje, opinie itp.) i określić, w jaki sposób odpowiada on Twoim celom.

Częstotliwość taktowania

Szybkość zegara procesora zamontowanego w PC.

Teoretycznie wyższa częstotliwość taktowania ma pozytywny wpływ na wydajność, ponieważ pozwala procesorowi wykonywać więcej operacji w jednostce czasu. Wartość ta jest jednak dość słabo powiązana z realną wydajnością. Faktem jest, że rzeczywiste możliwości procesora silnie zależą od wielu innych czynników — architektury, pojemności pamięci podręcznej, liczby rdzeni, obsługi specjalnych instrukcji itp. Podsumowując, porównywać według tej wartości można tylko układy z tej samej lub podobnej serii (patrz „Procesor”), a najlepiej — z tej samej generacji.

Częstotliwość TurboBoost / TurboCore

Częstotliwość taktowania procesora podczas pracy w trybie TurboBoost lub TurboCore.

Technologia Turbo Boost jest stosowana w procesorach Intel, Turbo Core — w procesorach AMD. Istota tej technologii jest tam i tam taka sama: jeśli niektóre rdzenie pracują pod dużym obciążeniem, a niektóre są bezczynne, to część zadań jest przenoszona z bardziej obciążonych rdzeni na mniej obciążone, co poprawia wydajność. Zwykle zwiększa to częstotliwość taktowania procesora; wartość ta jest wskazana w tym punkcie. Więcej ogólnych informacji na temat częstotliwości taktowania znajduje się powyżej.

Pojemność pamięci RAM

Ilość pamięci o dostępie swobodnym (pamięć główna lub RAM) dostarczonej w zestawie z komputerem.

Od tego parametru zależy bezpośrednio ogólna wydajność komputera: przy pozostałych warunkach równych, więcej pamięci RAM przyspiesza pracę, pozwala radzić sobie z bardziej zasobożernymi zadaniami i ułatwia jednoczesne wykonywanie dużej liczby procesów. Jeśli chodzi o konkretne liczby, minimalna pojemność wymagana do stabilnej pracy komputera ogólnego przeznaczenia wynosi teraz 4 GB. Dla mikrokomputerów i cienkich klientów mniejsza pojemność jest wystarczająca, podczas gdy w systemach do gier jest zainstalowanych co najmniej 8 GB. 16 GB, a tym bardziej 32 GB – to już bardzo solidne pojemności, a w najmocniejszych i wydajniejszych systemach pojawiają się wartości 64 GB i nawet więcej. Również w sprzedaży można znaleźć konfiguracje bez pamięci RAM - w przypadku takiego urządzenia użytkownik może wybrać pojemność pamięci według własnego uznania; z wielu powodów ta konfiguracja jest szczególnie popularna w nettopach.

Zwróć uwagę, że wiele nowoczesnych komputerów umożliwia zwiększenie ilości pamięci RAM, więc nie zawsze ma sens kupowanie drogiego urządzenia z dużą ilością pamięci RAM - czasami rozsądniej jest zacząć od prostszego modelu i rozszerzyć go, jeśli pojawia...się potrzeba. Możliwość uaktualnienia w takich przypadkach powinna zostać wyjaśniona oddzielnie.

Liczba banków

Liczba gniazd na moduły pamięci RAM na płycie głównej komputera. W tym przypadku mówimy o gniazdach na wyjmowane kości; w przypadku komputera z wbudowaną pamięcią parametr ten nie ma znaczenia.

Gniazda dostępne na płycie głównej mogą być zajęte, częściowo lub wcale (w modelach bez pamięci RAM). W każdym razie warto zwrócić uwagę na ich liczbę w przypadku, gdy początkowo zainstalowana ilość pamięci RAM Ci nie odpowiada (lub ostatecznie przestanie Ci odpowiadać) i planujesz uaktualnić system. Najmniejsza ilość znaleziona w komputerze z wymienną pamięcią to 1 gniazdo; jeśli jest zajęte, kość należy zmienić tylko podczas aktualizacji. Duża liczba gniazd pamięci RAM jest z konieczności sparowana, wynika to z wielu niuansów technicznych; najczęściej jest to liczba 2 lub 4, ale może być większa - do 16 w wydajnych stacjach roboczych.

Pamiętaj, że planując uaktualnienie, musisz wziąć pod uwagę nie tylko liczbę gniazd i rodzaj pamięci (patrz wyżej), ale także specyfikację płyty głównej. Wszystkie nowoczesne płyty główne mają ograniczenia dotyczące maksymalnej ilości pamięci RAM; w efekcie np. obecność dwóch gniazd DDR4 nie oznacza, że w systemie można zainstalować jednocześnie dwie kości o maksymalnej pojemności, po 128 GB każda.

Rodzaj dysku

Rodzaj pamięci masowej, standardowo zainstalowanej w komputerze.

Zwróć uwagę, że wiele komputerów stacjonarnych pozwala uzupełnić pamięć masową z zestawu lub nawet całkowicie ją wymienić, jednak wygodniej jest początkowo kupić odpowiednią konfigurację i nie zawracać sobie głowy ponownym wyposażeniem. Pod względem typów, tradycyjne dyski twarde (HDD) w dzisiejszych czasach coraz częściej ustępują miejsca półprzewodnikowym modułom SSD. Ponadto dość popularne są kombinacje HDD+SSD (m.in. z wykorzystaniem zaawansowanych technologii Intel Optane i Fusion Drive) i nowości SSD+SSD. Natomiast rozwiązania takie jak SSHD i eMMC prawie wyszły z użytku. Rozpatrzmy te warianty bardziej szczegółowo:

- HDD. Klasyczny twardy dysk magnetyczny. Kluczową zaletą takich dysków jest ich niski koszt w przeliczeniu na jednostkę pojemności - pozwala to na tworzenie pojemnych i jednocześnie niedrogich pamięci masowych. Dyski HDD jednak są zauważalnie gorsze od dysków SSD pod względem szybkości działania, a także nie tolerują uderzeń i wstrząsów. W związku z tym tego typu dyski są coraz rzadziej używane w czystej postaci – znacznie częściej można spotkać kombinację dysku twardego z modułem SSD (patrz niżej).

- SSD. Napęd półprzewodnikowy zbudowany w oparciu o pamięć fl...ash. Przy tej samej pojemności dysk SSD jest znacznie droższy niż dysk HDD, jednak jest to uzasadnione wieloma zaletami. Po pierwsze, takie dyski są znacznie szybsze niż dyski twarde; konkretna wydajność może być różna (w zależności od rodzaju pamięci, interfejsu połączenia itp.), jednak nawet niedrogie dyski SSD przewyższają zaawansowane dyski HDD pod tym względem. Po drugie, pamięć półprzewodnikowa nie zawiera ruchomych części, co zapewnia jednocześnie kilka zalet: lekkość, kompaktowość, odporność na wstrząsy i niski pobór mocy. A koszt takiej pamięci stale spada wraz z postępem technologii. Dlatego coraz więcej nowoczesnych komputerów stacjonarnych jest wyposażonych właśnie w takie dyski i mogą to być konfiguracje na każdym poziomie – od niedrogich po topowe.

- HDD+SSD. Obecność w jednym systemie jednocześnie dwóch dysków - HDD i SSD. Każda z tych odmian została szczegółowo opisana powyżej; a ich połączenie w jednym systemie pozwala połączyć zalety i częściowo zrekompensować wady. Na przykład na dysku SSD (który zwykle jest o dość małej pojemności) można przechowywać pliki systemowe i inne dane, dla których ważna jest szybkość dostępu (na przykład aplikacje do pracy); a dysk HDD dobrze nadaje się do dużych ilości informacji, które nie wymagają szczególnie dużej szybkości (typowym przypadkiem są pliki wideo i inne treści multimedialne). Ponadto moduł półprzewodnikowy może być używany nie jako oddzielna pamięć masowa, jednak jako pośrednia pamięć podręczna w celu przyspieszenia dysku twardego; jednak zazwyczaj wymaga to specjalnych ustawień oprogramowania (podczas gdy tryb „dwóch oddzielnych dysków” jest najczęściej dostępny domyślnie).
Podkreślamy również, że w tym przypadku chodzi o „zwykłe” moduły SSD, które nie należą do serii Optane i Fusion Drive; cechy tych serii są szczegółowo opisane poniżej.

- HDD+Optane. Połączenie tradycyjnego dysku twardego z dyskiem SSD z serii Intel Optane. Aby uzyskać więcej informacji na temat ogólnych cech tej kombinacji, zobacz „HDD+SSD” powyżej. Tutaj zauważamy, że dyski Optane różnią się od innych dysków SSD specjalną trójwymiarową strukturą komórek pamięci (technologia 3D Xpoint). Pozwala to na dostęp do danych na poziomie pojedynczych komórek i bez dodatkowych operacji, co przyspiesza przetwarzanie i zmniejsza opóźnienia, a także pozytywnie wpływa na żywotność pamięci. Druga różnica polega na tym, że Optane jest zwykle używany nie jako odrębny dysk, jednak jako pomocniczy bufor (pamięć podręczna) dla głównego dysku twardego, mający na celu zwiększenie szybkości działania. W tym przypadku oba dyski są postrzegane przez system jako jedno urządzenie. Wadą tego typu dysków SSD jest tradycyjnie dość wysoka cena; warto również zauważyć, że jego wyższość jest najbardziej zauważalna przy stosunkowo niskich obciążeniach (choć nie zanika całkowicie wraz ze wzrostem obciążenia).

- HDD+Fusion Drive. Odmiana pakietu „HDD+SSD” (patrz wyżej), używana wyłącznie w komputerach Apple i zoptymalizowana pod kątem zastrzeżonego systemu operacyjnego macOS. Jednak bardziej słuszne byłoby porównanie tej opcji z kombinacją „HDD+Optane” (również opisaną powyżej): na przykład oba napędy są postrzegane przez system jako całość, a moduł Fusion Drive jest również używany jako szybka pamięć podręczna dysku twardego. Jednak są też znaczące różnice. Po pierwsze, Fusion Drive ma znaczną pojemność i jest używany nie tylko jako bufor usług, jednak także jako część pełnowartościowego dysku - do trwałego przechowywania danych. Po drugie, całkowita pojemność całego pakietu odpowiada w przybliżeniu sumie pojemności obu dysków (minus kilka gigabajtów „usługowych”). Ten rodzaj pamięci nie jest tani, jednak wydajność i wygoda są całkowicie warte swojej ceny.

- SSHD. Tak zwana pamięć hybrydowa: urządzenie, które łączy w jednej obudowie dysk twardy i małą pamięć podręczną SSD. Jakiś czas temu rozwiązanie to było dość popularne, jednak teraz prawie nigdy się nie pojawia, wypierając bardziej praktyczną opcję - różne typy HDD+SSD.

- eMMC. Rodzaj pamięci półprzewodnikowej pierwotnie opracowany dla przenośnych gadżetów, takich jak smartfony i tablety. Od SSD różni się, z jednej strony, niższym kosztem i niskim zużyciem energii, z drugiej zaś — stosunkowo niską szybkością i niezawodnością. Z tego powodu ten rodzaj pamięci jest używany niezwykle rzadko - w szczególności w pojedynczych modelach mikrokomputerów i cienkich klientów (patrz „Rodzaj”).

- HDD+eMMC. Połączenie dysku twardego (HDD) i modułu półprzewodnikowego eMMC. Te typy pamięci zostały szczegółowo opisane powyżej; tutaj zauważamy, że ta opcja jest niezwykle rzadka, używana w dość specyficznych urządzeniach - komputerach All-In-One (patrz „Rodzaj”) z funkcją urządzenia konwertowalnego, gdzie ekran jest zdejmowanym tabletem, z którego można korzystać autonomicznie. W takim tablecie zwykle instalowany jest moduł eMMC, a dysk twardy jest umieszczony w części stacjonarnej. Możliwa jest również inna opcja - pakiet podobny do HDD+SSD (patrz wyżej), gdzie eMMC służy do obniżenia kosztów i/lub zużycia energii.

- SSD+eMMC. Kolejna kombinacja dwóch typów pamięci opisanych powyżej. Stosowano go w pojedynczych komputerach All-In-One i nettopach - głównie w celu obniżenia kosztów; dziś ta opcja prawie nie jest używana.

Pojemność dysku

Pojemność głównego dysku dostarczonego w zestawie z komputerem. W przypadku modeli z kombinowanymi pamięciami masowymi (na przykład HDD+SSD, patrz „Rodzaj pamięci masowej”) za główny w tym przypadku uważany jest większy dysk twardy; a jeśli w zestawie znajdują się dwa dyski HDD, to zwykle są one o takiej samej pojemności.

Z czysto praktycznego punktu widzenia im więcej danych może pomieścić dysk, tym lepiej. Tak więc wybór według tego wskaźnika zależy głównie od ceny: duża pojemność nieuchronnie oznacza wyższy koszt. Ponadto pamiętaj, że moduły SSD w przeliczeniu na gigabajt są znacznie droższe niż dyski twarde; tak więc pod względem pojemności i kosztów mogą być porównywane tylko dyski tego samego typu.

Jeśli chodzi o konkretną pojemność, to wskaźniki 250 GB lub mniej we współczesnych komputerach stacjonarnych można znaleźć głównie wśród dysków SSD. Dyski twarde tej wielkości prawie nigdy nie są używane, dla nich pojemności od 250 do 500 GB są nadal uważane za raczej skromne. 501 – 750 GB to całkiem dobra wartość jak na dysk SSD i jest najczęściej używana wśród nich. 751 GB – 1 TB to imponująca liczba jak na dysk SSD i średni poziom dla dysków twardych, 1,5 – 2 TB to bardzo solidna pojemność nawet jak na HDD. A bardzo dużą pojemność – ponad 2 TB – paradoksa...lnie można znaleźć nawet wśród czystych dysków SSD: takie dyski są instalowane w wysokiej klasy stacjach roboczych, gdzie prędkość jest nie mniej ważna niż pojemność.

Prędkość obrotowa

Nominalna prędkość obrotowa osi dysku twardego (patrz „Rodzaj pamięci masowej”) zainstalowanego w komputerze.

Talerze dysków twardych w stanie roboczym stale się obracają. Standardowe opcje prędkości obrotowej we współczesnych komputerach to 5400 i 7200 obr./min (revolutions per minute — obrotów na minutę). Większa prędkość obrotowa przyspiesza dostęp do danych, ale znacząco wpływa na koszt dysku. Ponadto „szybkie” dyski są uważane za mniej niezawodne (co często rekompensowane jest różnymi poprawkami konstrukcyjnymi, ale mają one również wpływ na cenę).
Impression CoolPlay często porównują
HP ProDesk 490 G3 często porównują