Tryb nocny
Polska
Katalog   /   Komputery   /   Komputery stacjonarne

Porównanie Dell Vostro 3668 N403VD3668EMEA01UBU vs It-Blok Multimedia i7 7700 B

Dodaj do porównania
Dell Vostro 3668 (N403VD3668EMEA01UBU)
It-Blok Multimedia (i7 7700 B)
Dell Vostro 3668 N403VD3668EMEA01UBUIt-Blok Multimedia i7 7700 B
od 2 927 zł
Produkt jest niedostępny
od 2 811 zł
Produkt jest niedostępny
TOP sprzedawcy
Rodzajstacjonarnystacjonarny
Format obudowyMini TowerMidi Tower
Procesor
ChipsetIntel H110Intel H110
Rodzajdesktopowydesktopowy
SeriaCore i7Core i7
Model77007700
Liczba rdzeni44
Liczba wątków88
Częstotliwość taktowania3.6 GHz3.6 GHz
Częstotliwość TurboBoost / TurboCore4.2 GHz4.2 GHz
Pamięć RAM
Pojemność pamięci RAM8 GB8 GB
Rodzaj pamięciDDR4DDR4
Częstotliwość taktowania2400 MHz2400 MHz
Liczba banków22
Maksymalna obsługiwana pojemność32 GB32 GB
Karta graficzna
Rodzaj karty graficznejzintegrowanadedykowana
Model karty graficznejHD Graphics 630GeForce GTX 1050 Ti
Pojemność pamięci VRAM4 GB
Rodzaj pamięciGDDR5
Dysk
Rodzaj dyskuHDDHDD
Pojemność dysku1000 GB2000 GB
Prędkość obrotowa5400 obr./min7200 obr./min
Liczba wewnętrznych zatok 3.5"4
Tylny panel
Złącza
VGA
 
wyjście HDMI
 
 
DVI
wyjście HDMI
DisplayPort
PS/21 szt.
USB 2.04 szt.4 szt.
USB 3.2 gen12 szt.
Przedni panel
NapędDVD-RWbrak
Liczba zewnętrznych zatok 5.25"1 szt.2 szt.
mini-Jack (3,5 mm)
USB 2.01 szt.
USB 3.2 gen12 szt.1 szt.
Czytnik kart pamięci
Multimedia
LAN (RJ-45)1 Gb/s1 Gb/s
Wi-FiWi-Fi 5 (802.11aс)brak
Bluetooth+
Dźwięk5.17.1
Dane ogólne
Moc zasilacza240 W500 W
Preinstalowany system operacyjnyLinuxWindows 10 Home
Materiał obudowystalstal
Wymiary (WxSxG)353x154x294 mm476x205x458 mm
Waga5.9 kg
Kolor obudowy
Data dodania do E-Katalogsierpień 2017sierpień 2017

Format obudowy

Współczynnik kształtu obudowy komputera charakteryzuje przede wszystkim objętość wewnętrzną. Podstawowe współczynniki kształtu komputera stacjonarnego to:

- Midi Tower. Przedstawiciel rodziny tower (obudowy montowanej pionowo) średniej wielkości - około 45 cm wysokości i 15-20 cm szerokości, z liczbą zewnętrznych wnęk od 2 do 4. Najpopularniejsze dla domowych komputerów klasy średniej.

- Mini Tower. Najbardziej kompaktowy pionowy typ obudowy o szerokości 15-20 cm, ma wysokość około 35 cm i (zazwyczaj) nie więcej niż 2 wnęki z dostępem z zewnątrz. Jest używany głównie w komputerach biurowych, które nie wymagają wysokiej wydajności.

Full Tower. Pionowa obudowa jest obecnie jednym z największych współczynników kształtu do komputerów: szerokość wynosi 15-20 cm, wysokość 50-60 cm, liczba zatok z dostępem z zewnątrz może sięgać 10. Najczęściej w tym formacie produkowane są obudowy komputerów o wysokiej wydajności.

- Desktop. Obudowy przeznaczone do montażu bezpośrednio na biurku. Często mają możliwość montażu poziomego – dzięki czemu monitor można postawić na obudowie – choć zdarzają się też modele, które montuje się stricte pionowo. W każdym razie modele „desktopowe” są stosunkowo niewielkie.

- Cube Case. Obudowy sześcienne lub podobne. Mogą mieć różne rozmi...ary i są przeznaczone do różnych typów płyt głównych, ten punkt w każdym przypadku należy doprecyzować osobno. Tak czy inaczej, takie obudowy mają dość oryginalny wygląd, który różni się od tradycyjnych „wież” i „desktopów”.

Rodzaj karty graficznej

Typ karty graficznej używanej w komputerze. Nowoczesne komputery mogą być wyposażone zarówno w zintegrowane moduły (wśród nich można znaleźć produkty Apple i IntelHD Graphics, UHD Graphics i Iris), jak i w dyskretne karty graficzne (w tym profesjonalnego poziomu), które mogą być instalowane w kilku sztukach z użyciem technologii SLI lub CrossFire. Ponadto, w sprzedaży można znaleźć konfiguracje, które w ogóle nie są wyposażone w adaptery graficzne. Oto bardziej szczegółowy opis każdego wariantu:

— Zintegrowana. Karty graficzne wbudowane bezpośrednio w procesor (rzadziej — w płytę główną) i nieposiadające własnej dedykowanej pamięci: pamięć do przetwarzania wideo jest pobierana z ogólnej pamięci RAM. Główne zalety takich modułów to niska cena, niskie zużycie energii, minimalne wydzielanie ciepła (nie wymagające specjalnych systemów chłodzenia) i maksymalnie kompaktowe rozmiary. Z drugiej strony, wydajność tego typu grafiki jest niska: wystarcza do nieskomplikowanych codziennych zadań, takich jak przeglądanie internetu, oglądanie wideo i mniej wymagające gry, ale do bardziej poważnych celów zaleca się posiadanie w systemie dyskretnego adaptera wideo. Fakt, że zinte...growane systemy zajmują część systemowej pamięci RAM podczas pracy, również nie sprzyja wydajności.

— Dyskretna. Karty graficzne w postaci oddzielnych modułów ze specjalizowanym procesorem i własną pamięcią. Są zauważalnie droższe od zintegrowanych, zajmują więcej miejsca i zużywają więcej energii, jednak wszystkie te wady są rekompensowane kluczową zaletą — wysoką wydajnością. Pozwala to na pracę nawet z „ciężkim” kontentem graficznym, takim jak nowoczesne gry, renderowanie 3D, montaż wideo w wysokich rozdzielczościach itp. (choć konkretne charakterystyki dyskretnej grafiki mogą się różnić). Ponadto, przetwarzanie grafiki w takich systemach nie angażuje głównej pamięci operacyjnej, co również jest istotną zaletą. Dla dodatkowego zwiększenia wydajności dyskretne adaptery wideo mogą być łączone w systemy SLI / CrossFire, ten wariant jest wskazywany osobno (patrz poniżej). Warto również zauważyć, że w większości nowoczesnych komputerów taka grafika jest łączona z procesorem posiadającym wbudowane jądro graficzne i często działa w trybie hybrydowym: zintegrowany moduł jest używany do nieskomplikowanych zadań, a przy wzroście obciążenia system przełącza się na dyskretną kartę graficzną.

— SLI / CrossFire. Kilka dyskretnych kart graficznych (patrz wyżej), połączonych w zestaw za pomocą technologii SLI (stosowanej przez NVIDIA) lub CrossFire (używanej przez AMD). Z punktu widzenia przeciętnego użytkownika nie ma zasadniczych różnic między tymi technologiami: obie pozwalają na połączenie mocy obliczeniowej kilku kart graficznych, zwiększając tym samym wydajność graficzną. Jednak taka grafika nie jest tania, dlatego stosuje się ją wyłącznie w wysokowydajnych komputerach z naciskiem na możliwości graficzne — w szczególności w komputerach dla graczy.

— Kupowana osobno. Brak jakiejkolwiek karty graficznej w początkowej konfiguracji komputera. Dość rzadki wariant, spotykany w niektórych wysokiej klasy stacjach roboczych: takie konfiguracje są wyposażone w profesjonalne procesory bez wbudowanego jądra graficznego i nie mają dyskretnej grafiki — zakłada się, że taki adapter użytkownikowi wygodniej jest kupić osobno.

Model karty graficznej

 

Pojemność pamięci VRAM

Pojemność własnej pamięci dostarczonej na dedykowanej karcie graficznej (patrz „Typ karty graficznej”).

Im większa jest ta pojemność, tym mocniejsza i bardziej zaawansowana jest karta VRAM, tym lepiej radzi sobie ze złożonymi zadaniami, a zatem więcej kosztuje. Obecnie pojemności 2 GB i 3 GB są uważane za dość skromne, 4 GB za niezłe, 6 GB i 8 GB są dość solidne, a ponad 8 GB oznacza, że mamy wyspecjalizowany komputer zaprojektowany z myślą o maksymalnej wydajności graficznej.

Rodzaj pamięci

Rodzaj pamięci graficznej używanej przez dedykowaną kartę graficzną (patrz „Typ karty graficznej”).

W większości tych adapterów instaluje się pamięć graficzną typu GDDR - rodzaj konwencjonalnej pamięci RAM DDR zoptymalizowanej do użytku z zadaniami graficznymi. Ta pamięć jest dostępna na rynku w kilku wersjach; ponadto istnieją inne odmiany. Oto bardziej szczegółowy opis różnych opcji:

- GDDR3. W swoim czasie był to dość powszechny typ pamięci graficznej; dziś jest jednak uważany za przestarzały i nie jest używany w nowych komputerach.

- GDDR5. Najpopularniejszy (stan na 2020 r.) typ pamięci graficznej GDDR. Zapewnia dobrą wydajność za rozsądną cenę, dlatego znajduje się w komputerach w różnych kategoriach cenowych.

- GDDR5X. Modyfikacja wspomnianej wyżej pamięci GDDR5, oferująca dwukrotnie większą przepustowość. W związku z tym wydajność takiej pamięci (przy tych samych objętościach) okazuje się zauważalnie wyższa; jednak takie moduły są drogie.

- GDDR6. Najnowszy ze standardów GDDR (stan na 2020 r.) - pierwsze karty graficzne oparte na tego typu pamięci zostały zaprezentowane w 2018 roku. Różni się od swojego bezpośredniego poprzednika - GDDR5X - zarówno zwiększoną przepustowością, jak i zmniejszonym napięciem roboczym, co zapewnia jednocześnie zwiększoną wydajność i mniejsze zużycie energii. Warto też zaznaczyć, że GDDR6 został opracowany z myślą o wykorzystaniu go w określonych zadaniach - takich jak VR czy praca z ro...zdzielczościami powyżej 4K UHD.

- HBM2. Oryginalny HBM jest rodzajem pamięci o dostępie swobodnym zaprojektowanym w celu maksymalizacji prędkości wymiany danych; HBM2 to druga wersja tej technologii, w której przepustowość została podwojona w stosunku do oryginalnego HBM. Taka pamięć zasadniczo różni się konstrukcją od DDR - w szczególności komórki pamięci są ułożone warstwami i umożliwiają jednoczesny dostęp. Dzięki temu prędkość HBM jest kilkakrotnie wyższa niż najszybszych wersji GDDR, co czyni tę technologię idealną do dużych obciążeń, takich jak przetwarzanie grafiki UltraHD i wirtualnej rzeczywistości. Jednocześnie częstotliwość taktowania takich modułów jest niska, a zatem zużycie energii i wydzielanie ciepła są niskie. Wada tej opcji jest tradycyjna - wysoka cena.

- DDR3. Pamięć, która nie ma specjalizacji graficznej - innymi słowy, ta sama pamięć DDR3, która jest używana w kościach RAM (patrz „Typ pamięci” powyżej). W przypadku kart graficznych takie rozwiązania są całkowicie przestarzałe i prawie nigdy nie są stosowane w naszych czasach.

Pojemność dysku

Pojemność głównego dysku dostarczonego w zestawie z komputerem. W przypadku modeli z kombinowanymi pamięciami masowymi (na przykład HDD+SSD, patrz „Rodzaj pamięci masowej”) za główny w tym przypadku uważany jest większy dysk twardy; a jeśli w zestawie znajdują się dwa dyski HDD, to zwykle są one o takiej samej pojemności.

Z czysto praktycznego punktu widzenia im więcej danych może pomieścić dysk, tym lepiej. Tak więc wybór według tego wskaźnika zależy głównie od ceny: duża pojemność nieuchronnie oznacza wyższy koszt. Ponadto pamiętaj, że moduły SSD w przeliczeniu na gigabajt są znacznie droższe niż dyski twarde; tak więc pod względem pojemności i kosztów mogą być porównywane tylko dyski tego samego typu.

Jeśli chodzi o konkretną pojemność, to wskaźniki 250 GB lub mniej we współczesnych komputerach stacjonarnych można znaleźć głównie wśród dysków SSD. Dyski twarde tej wielkości prawie nigdy nie są używane, dla nich pojemności od 250 do 500 GB są nadal uważane za raczej skromne. 501 – 750 GB to całkiem dobra wartość jak na dysk SSD i jest najczęściej używana wśród nich. 751 GB – 1 TB to imponująca liczba jak na dysk SSD i średni poziom dla dysków twardych, 1,5 – 2 TB to bardzo solidna pojemność nawet jak na HDD. A bardzo dużą pojemność – ponad 2 TB – paradoksa...lnie można znaleźć nawet wśród czystych dysków SSD: takie dyski są instalowane w wysokiej klasy stacjach roboczych, gdzie prędkość jest nie mniej ważna niż pojemność.

Prędkość obrotowa

Nominalna prędkość obrotowa osi dysku twardego (patrz „Rodzaj pamięci masowej”) zainstalowanego w komputerze.

Talerze dysków twardych w stanie roboczym stale się obracają. Standardowe opcje prędkości obrotowej we współczesnych komputerach to 5400 i 7200 obr./min (revolutions per minute — obrotów na minutę). Większa prędkość obrotowa przyspiesza dostęp do danych, ale znacząco wpływa na koszt dysku. Ponadto „szybkie” dyski są uważane za mniej niezawodne (co często rekompensowane jest różnymi poprawkami konstrukcyjnymi, ale mają one również wpływ na cenę).

Liczba wewnętrznych zatok 3.5"

Liczba wewnętrznych slotów na podzespoły 3,5" w komputerze. Ten współczynnik kształtu jest standardem dla dysków twardych i jest często używany w innych typach napędów; w związku z tym im więcej slotów, tym więcej napędów można zamontować w komputerze.

Zwracanie uwagi na liczbę wewnętrznych slotów 3,5" ma sens przede wszystkim, jeśli kupujesz konfigurację bez napędów lub planujesz w przyszłości modernizację swojego komputera. Warto zauważyć, że zaleca się montaż napędów nie w jednym rzędzie, lecz przez jeden slot - dla wydajności chłodzenia, aby liczba slotów była dwukrotnie większa od liczby montowanych urządzeń.

Złącza

W większości komputerów stacjonarnych asortyment ten obejmuje zarówno złącza na płycie głównej, jak i dedykowanej karcie graficznej, wśród których są VGA, DVI, wyjście HDMI (istnieją modele, w których HDMI 2 szt.), wejście HDMI, DisplayPort, miniDisplayPort. Więcej szczegółów na ich temat.

- VGA. Inaczej nazywa się D-Sub. Analogowe wyjście wideo o maksymalnej rozdzielczości do 1280x1024 bez obsługi dźwięku. Rzadko jest instalowane w nowoczesnych urządzeniach, jednak może być przydatne do podłączenia niektórych modeli projektorów i telewizorów, a także przestarzałego sprzętu wideo.

- DVI. Nowoczesne komputery stacjonarne mogą być wyposażone zarówno w czysto cyfrowe złącze DVI-D, jak i hybrydowe DVI-I; to ostatnie umożliwia również połączenie analogowe, w tym współpracę z urządzeniami VGA przez adapter, a w formacie analogowym ma rozdzielczość 1280x1024. W cyfrowym DVI parametr ten może osiągnąć 1920x1200 w trybie pojedynczego kanału (single link) i 2560x1600 w trybie podwójnego kanału (dual link). Dostępność trybu dwukanałowego należy wyjaśnić osobno.

- Wyjście HDMI. Wyjście cyfrowe pierwotnie przeznaczone dla treści HD — wideo o wysokiej rozdzielczości i wielokanałowego dźwięku. Interfejs HDMI jest niemal obowiązko...wy w nowoczesnym sprzęcie multimedialnym z obsługą HD, jest też niezwykle popularny w monitorach komputerowych - więc dostępność takiego wyjścia w komputerze stacjonarnym daje bardzo szerokie możliwości podłączenia zewnętrznych ekranów, a nawet wysokiej klasy urządzeń audio. Niektóre urządzenia mogą mieć nawet 2 wyjścia HDMI.

- Wejście HDMI. Dostępność co najmniej jednego wejścia HDMI w komputerze. Aby uzyskać szczegółowe informacje na temat samego interfejsu, patrz powyżej; tutaj zauważamy, że to wejścia tego formatu znajdują się głównie w komputerach All-In-One (patrz „Rodzaj”). Pozwala to przynajmniej na użycie własnego ekranu komputera All-In-One jako ekranu dla innego urządzenia (na przykład jako zewnętrznego monitora laptopa). Możliwe są również inne, bardziej szczegółowe opcje korzystania z wejścia HDMI - na przykład nagrywanie przychodzącego sygnału wideo lub przesyłanie go (przełączanie) do jednego z wyjść wideo komputera.
Zarówno wejścia, jak i wyjścia HDMI we współczesnych komputerach mogą odpowiadać różnym wersjom:
  • v 1.4. Najwcześniejszy standard w powszechnym użyciu. Obsługuje rozdzielczości do 4096x2160 i częstotliwość odświeżania do 120 kl./s (choć tylko w rozdzielczości 1920x1080 lub niższej), może być również używany do przesyłania sygnałów wideo 3D. Oprócz oryginalnej wersji 1.4, można znaleźć ulepszone v 1.4a i v 1.4b - w obu przypadkach usprawnienia wpłynęły głównie na pracę z 3D.
  • v 2.0. Standard, znany również jako HDMI UHD, jako pierwszy zapewnił pełną obsługę UltraHD 4K, częstotliwość odświeżania do 60 kl./s, a także kompatybilność z proporcjami klatki 21:9. Ponadto liczba jednocześnie transmitowanych kanałów i strumieni audio wzrosła odpowiednio do 32 i 4. Warto również zauważyć, że początkowo wersja 2.0 nie zapewniała obsługi HDR, jednak pojawiła się ona w aktualizacji v 2.0a; jeśli funkcja ta jest dla Ciebie ważna, warto wyjaśnić, która wersja 2.0 jest dostępna na komputerze, oryginalna lub zaktualizowana.
  • v 2.0b. Druga aktualizacja opisanej powyższej v 2.0. Główną aktualizacją było rozszerzenie możliwości HDR, w szczególności obsługa dwóch nowych formatów.
  • v 2.1. Nazywana również HDMI Ultra High Speed: przepustowość została zwiększona do tego stopnia, że możliwe stało się przesyłanie wideo 10K z prędkością 120 kl./s (nie wspominając o skromniejszych rozdzielczościach) oraz praca z rozbudowanymi schematami kolorów do 16 bitów. To ostatnie może być przydatne do niektórych zadań zawodowych. Należy jednak pamiętać, że wszystkie funkcje HDMI v 2.1 są dostępne tylko przy użyciu kabli zaprojektowanych dla tego standardu.
- DisplayPort. Cyfrowy interfejs multimedialny, pod wieloma względami podobny do HDMI, jednak wykorzystywany głównie w sprzęcie komputerowym – w szczególności jest szeroko stosowany w komputerach i monitorach Apple. Jedną z ciekawych cech tego standardu jest możliwość pracy w formacie daisy chain – szeregowe podłączenie kilku ekranów do jednego portu, z transmisją własnego sygnału do każdego z nich (chociaż funkcja ta nie jest technicznie dostępna we wszystkich ekranach dla tego interfejsu). DisplayPort jest również dostępny na rynku w kilku wersjach, które są obecnie aktualne:
  • v 1.2. Najwcześniejsza powszechnie używana wersja (2010 r.). Jednak już w tej wersji pojawiła się kompatybilność 3D i tryb daisy chain. Maksymalna w pełni obsługiwana rozdzielczość przy podłączeniu jednego monitora to 5K (30 kl./s), z pewnymi ograniczeniami możliwa jest transmisja do 8K; częstotliwość odświeżania 60 Hz jest obsługiwana do rozdzielczości 3840x2160, a 120 Hz - do 2560x1600. Korzystając z połączenia szeregowego, można jednocześnie podłączyć do 2 ekranów 2560x1600 przy 60 klatkach na sekundę lub do 4 ekranów 1920x1200. Oprócz oryginalnej wersji 1.2, istnieje ulepszona v 1.2a, której główną innowacją jest obsługa AMD FreeSync - technologii synchronizacji częstotliwości odświeżania monitora z sygnałem z karty graficznej AMD.
  • v 1.3. Aktualizacja wprowadzona w 2014 roku. Zwiększona przepustowość pozwoliła zapewnić już pełną, bez ograniczeń obsługę 8K przy 30 kl./s, a także przesyłać obrazy 4K przy 120 kl./s, wystarczających do pracy z 3D. Rozdzielczości w trybie daisy chain również wzrosły - do 4K (3840x2160) przy 60 kl./s dla dwóch ekranów i 2560x1600 przy tej samej częstotliwości odświeżania dla czterech. Z konkretnych innowacji warto wspomnieć o trybie Dual Mode, który umożliwia podłączenie urządzeń HDMI i DVI do takiego złącza poprzez najprostsze pasywne adaptery.
  • v 1.4. Najnowsza wersja szeroko stosowana w nowoczesnych komputerach stacjonarnych. Formalnie maksymalna prędkość połączenia nie wzrosła w porównaniu do poprzedniej wersji, jednak dzięki optymalizacji sygnału stała się możliwa praca z rozdzielczościami 4K i 5K przy 240 kl./s oraz z 8K - przy 120 kl./s. Co prawda, do tego podłączony ekran musi obsługiwać technologię kodowania DSC - w przeciwnym razie dostępne rozdzielczości nie będą się różnić od wskaźników wersji 1.3. Ponadto w wersji 1.4 dodano obsługę szeregu funkcji specjalnych, w tym HDR10, a maksymalna liczba jednocześnie przesyłanych kanałów audio wzrosła do 32.
- miniDisplayPort. Zmniejszona wersja pisanego powyżej złącza DisplayPort może również odpowiadać różnym wersjom (patrz wyżej). Zwróć uwagę, że to samo złącze sprzętowe jest używane w Thunderbolt w wersjach 1 i 2, a część graficzna tego interfejsu jest oparta na DisplayPort. Dlatego nawet niektóre monitory Thunderbolt można podłączyć bezpośrednio do miniDisplayPort (chociaż wskazane jest doprecyzowanie tej opcji osobno).

- COM (RS-232). Port szeregowy, pierwotnie używany do podłączania modemów telefonicznych i niektórych urządzeń peryferyjnych, w szczególności myszy. Jednak dziś ten interfejs jest używany jako interfejs serwisowy w różnych urządzeniach - telewizorach, projektorach, sprzęcie sieciowym (routerach i przełącznikach) itp. Połączenie z komputerem stacjonarnym przez RS-232 umożliwia sterowanie parametrami urządzenia zewnętrznego z poziomu komputera.
Dell Vostro 3668 często porównują
It-Blok Multimedia często porównują