Polska
Katalog   /   Komputery   /   Komputery stacjonarne

Porównanie It-Blok Game i5 8500 D vs ASRock DeskMini 110 110/B/BB

Dodaj do porównania
It-Blok Game (i5 8500 D)
ASRock DeskMini 110 (110/B/BB)
It-Blok Game i5 8500 DASRock DeskMini 110 110/B/BB
od 2 809 zł
Produkt jest niedostępny
od 715 zł
Produkt jest niedostępny
TOP sprzedawcy
Rodzajgamingowynettop
Format obudowyMidi Tower
Procesor
ChipsetIntel B360Intel H110
Rodzajdesktopowydesktopowy
SeriaCore i5do zakupu osobno
Model8500
Liczba rdzeni6
Częstotliwość taktowania3 GHz
Częstotliwość TurboBoost / TurboCore4.1 GHz
Pamięć RAM
Pojemność pamięci RAM8 GBdo zakupu osobno
Rodzaj pamięciDDR4DDR4
Częstotliwość taktowania2666 MHz2133 MHz
Liczba banków
/SO-DIMM/
Karta graficzna
Rodzaj karty graficznejdedykowanazintegrowana
Model karty graficznejGeForce GTX 1060HD Graphics
Pojemność pamięci VRAM3 GB
Rodzaj pamięciGDDR5
Obsługa VR
Dysk
Do zakupu osobno
Rodzaj dyskuHDD
Pojemność dysku2000 GB
Prędkość obrotowa7200 obr./min
Liczba wewnętrznych zatok 3.5"
/+2 przegrody 2,5"/
Tylny panel
Złącza
 
 
VGA
wyjście HDMI
USB 2.01 szt.
USB 3.2 gen11 szt.
Przedni panel
Napędbrakbrak
mini-Jack (3,5 mm)
USB 2.02 szt.
USB 3.2 gen11 szt.1 szt.
USB C 3.2 gen1
1 szt. /USB 3.0/
Multimedia
LAN (RJ-45)1 Gb/s1 Gb/s
Wi-Fibrakbrak
Dane ogólne
Moc zasilacza500 W120 W
Preinstalowany system operacyjnyWindows 10 Homebez systemu operacyjnego
Materiał obudowystalstal
Wymiary (WxSxG)470x185x400 mm80x155x155 mm
Kolor obudowy
Data dodania do E-Katalogczerwiec 2018lipiec 2017

Rodzaj

Ogólny rodzaj komputera. Oprócz klasycznych modeli stacjonarnych (w tym gamingowych), obecnie pojawiają się bardziej nietypowe rozwiązania: komputery All-In-One, nettopy, mikrokomputery. Oto cechy każdego typu:

- Stacjonarny. Tradycyjne komputery stacjonarne, czyli modele, które nie należą do żadnej z bardziej szczegółowych kategorii. W przeważającej części nie są one nawet nie desktopowe, a raczej „podbiurkowe” – wykonuje się je w pionowych obudowach, najczęściej umieszczanych pod blatem, poziome jednostki systemowe wśród takich urządzeń są niezwykle rzadkie.

- Gamingowy. Różnorodne komputery stacjonarne przeznaczone dla profesjonalnych graczy i entuzjastów gier. Takie modele są koniecznie wyposażone w potężne „wypełnienie”, które pozwala wygodnie grać nawet w wymagające współczesne gry. Ponadto często zapewniają różne dodatkowe funkcje, które są przydatne ze względu na specjalizację: wbudowane narzędzia do przetaktowywania, wysokiej klasy konfigurowalne układy chłodzenia itp. Kolejną cechą komputerów do gier jest charakterystyczny design, często dość oryginalny: w „agresywnym” stylu, z podświetleniem, nietypowym kształtem obudowy, przezroczystymi wstawkami itp.

- Komputer All-In-One. Komputery All-In-One to urządzenia łączące ekran, elektronikę jednostki systemowej, zestaw złącz...y i głośniki w jednej obudowie; innymi słowy są to monitory z wbudowanym komputerowym „wypełnieniem”. Ta konstrukcja ma dwie główne zalety. Po pierwsze, system początkowo ma wyświetlacz, a do tego dość duży i optymalnie dopasowany do jego konfiguracji – dzięki czemu użytkownik nie musi szukać osobnego ekranu. Po drugie, taki komputer zajmuje bardzo mało miejsca – niewiele więcej niż monitor o tej samej przekątnej ekranu; ponadto brak oddzielnej jednostki systemowej można zapisać jako zaletę. Jednak, jeśli w zwykłym komputerze jednostkę systemową i monitor można wybrać osobno, według własnego uznania, w komputerach All-In-One nie jest to możliwe - masz do czynienia z kombinacjami, które początkowo oferuje producent. Oprócz tego, możliwości modyfikacji i modernizacji takich modeli są zauważalnie skromniejsze niż tradycyjnych i nie ma mowy o wymianie ekranu w ogóle.

- Nettop. Urządzenia znane również jako „mini PC”. Są niewielkie i skromnie wyposażone - w szczególności bardzo ograniczony jest zestaw portów. Ponadto wiele nettopów nie wyróżnia się wydajnością i jest przeznaczonych głównie do pracy z dokumentami, surfowania po Internecie i innych prostych zadań. Istnieją jednak również dość wydajne rozwiązania produkcyjne. W każdym razie główną zaletą nettopu jest jego kompaktowość.

- Mikrokomputer. Jak sama nazwa wskazuje, komputery tego typu są niezwykle miniaturowe – są porównywalne rozmiarami do pendrive'ów i bardziej przypominają przenośne adaptery do zewnętrznych ekranów niż samodzielne urządzenia. Na obudowie takiego „adaptera” zwykle ma się własne złącze HDMI, które służy do podłączenia monitora lub telewizora; ten sam port zapewnia zasilanie. A obudowa najczęściej zawiera „mobilny” energooszczędny procesor ze zintegrowaną kartą graficzną, kompaktową pamięcią masową SSD lub eMMC i modułami bezprzewodowymi. Urządzenia peryferyjne, takie jak klawiatury i myszy, podłącza się głównie przez Bluetooth, jednak wiele modeli ma złącza przewodowe, takie jak USB, a czasem w całkiem przyzwoitej ilości (2 lub nawet 3). Generalnie takie urządzenie może być dobrą alternatywą dla tabletu czy laptopa dla tych, którzy często przemieszczają się między różnymi miejscami pracy – najważniejsze, że miejsca te mają odpowiednie ekrany do podłączenia. Moc mikrokomputerów jest naturalnie niska, jednak nie są one przeznaczone do „ciężkich” zadań.

- Cienki klient. Cienkie klienty to komputery zaprojektowane do używania w trybie terminala dla serwerów zewnętrznych. W takim przypadku wszystkie obliczenia wymagające dużej ilości zasobów są wykonywane przez serwer, a funkcje cienkiego klienta ograniczają się do wprowadzania danych początkowych i odbierania wyników. Większość z tych komputerów w ogóle nie zakłada samodzielnej pracy, jednak nie jest to wada, lecz cecha specjalizacji. Ogólnie rzecz biorąc, ten format pracy nie jest używany w życiu codziennym i w zwykłej sferze biznesowej, natomiast jest idealny do niektórych wąsko zawodowych zadań. A ponieważ cienki klient nie wymaga dużej wydajności, może być tak kompaktowy, lekki i niedrogi, jak to tylko możliwe.

Format obudowy

Współczynnik kształtu obudowy komputera charakteryzuje przede wszystkim objętość wewnętrzną. Podstawowe współczynniki kształtu komputera stacjonarnego to:

- Midi Tower. Przedstawiciel rodziny tower (obudowy montowanej pionowo) średniej wielkości - około 45 cm wysokości i 15-20 cm szerokości, z liczbą zewnętrznych wnęk od 2 do 4. Najpopularniejsze dla domowych komputerów klasy średniej.

- Mini Tower. Najbardziej kompaktowy pionowy typ obudowy o szerokości 15-20 cm, ma wysokość około 35 cm i (zazwyczaj) nie więcej niż 2 wnęki z dostępem z zewnątrz. Jest używany głównie w komputerach biurowych, które nie wymagają wysokiej wydajności.

Full Tower. Pionowa obudowa jest obecnie jednym z największych współczynników kształtu do komputerów: szerokość wynosi 15-20 cm, wysokość 50-60 cm, liczba zatok z dostępem z zewnątrz może sięgać 10. Najczęściej w tym formacie produkowane są obudowy komputerów o wysokiej wydajności.

- Desktop. Obudowy przeznaczone do montażu bezpośrednio na biurku. Często mają możliwość montażu poziomego – dzięki czemu monitor można postawić na obudowie – choć zdarzają się też modele, które montuje się stricte pionowo. W każdym razie modele „desktopowe” są stosunkowo niewielkie.

- Cube Case. Obudowy sześcienne lub podobne. Mogą mieć różne rozmi...ary i są przeznaczone do różnych typów płyt głównych, ten punkt w każdym przypadku należy doprecyzować osobno. Tak czy inaczej, takie obudowy mają dość oryginalny wygląd, który różni się od tradycyjnych „wież” i „desktopów”.

Chipset

Model chipsetu używanego w standardowej konfiguracji komputera.

Chipset można opisać jako zestaw układów, które umożliwiają współpracę procesora, pamięci RAM, urządzeń wejścia/wyjścia i tym podobnych. To właśnie ten chipset jest podstawą każdej płyty głównej. Znając model chipsetu, możesz znaleźć i ocenić jego szczegółowe cechy; większość użytkowników nie potrzebuje takich informacji, ale dla specjalistów może to być bardzo przydatne.

Seria

Głównymi producentami procesorów w dzisiejszych czasach są Intel i AMD, a w 2020 roku swoje procesory z serii M1 zaprezentowała również firma Apple (z dalszym rozwinięciem w postaci M1 Max i M1 Ultra), kilka lat później zaprezentowawszy drugą serię M2 (M2 Pro, M2 Max, M2 Ultra) oraz trzecią M3 Lista aktualnych serii Intela obejmuje Atom, Celeron, Pentium, Core i3, Core i5, Core i7, Core i9 oraz Xeon. Dla AMD z kolei ta lista wygląda tak: AMD Athlon, AMD FX, Ryzen 3, Ryzen 5, Ryzen 7, Ryzen 9 i Ryzen Threadripper.

Ogólnie rzecz biorąc, każda seria obejmuje procesory różnych generacji, podobne pod względem ogólnego poziomu i pozycjonowania....Oto bardziej szczegółowy opis każdej z opisanych powyżej opcji:

— Atom. Procesory pierwotnie zaprojektowane dla urządzeń mobilnych. W związku z tym charakteryzują się kompaktowością, wysoką wydajnością energetyczną i niskim wytwarzaniem ciepła, jednak nie są specjalnie wydajne. Idealnie przystosowane do mikrokomputerów (patrz „Rodzaj”), a wśród bardziej „wielkoformatowych” systemów są niezwykle rzadkie - najczęściej w najskromniejszych konfiguracjach.

— Celeron. Procesory z niskiej półki cenowej, najprostsze i najtańsze układy klasy konsumenckiej firmy Intel dla komputerów stacjonarnych, o stosownych parametrach.

— Pentium. Rodzina niedrogich procesorów desktopowych Intel, nieco bardziej zaawansowana niż Celeron, jednak gorsza od serii Core i*.
br> — Core i3. Najprostsza i najtańsza seria wśród procesorów desktopowych Core firmy Intel, zawiera budżetowe i niedrogie układy średniej klasy, które jednak przewyższają „Celerony” i „Pentiumy”.

— Core i5. Rodzina procesorów Intel Core średniej klasy; ogólnie układy z tej serii można przypisać do średniego poziomu według standardów systemów stacjonarnych.

— Core i7. Seria wysokowydajnych procesorów, które od dawna znajdują się na szczycie wśród układów Core; dopiero w 2017 roku straciła tę pozycję na rzecz rodziny i9. Jednak obecność procesora i7 nadal oznacza dość potężną i zaawansowaną konfigurację; w szczególności takie procesory znajdują się w komputerach All-In-One klasy premium, a także są dość popularne w systemach do gier.

— Core i9. Najlepsza seria wśród procesorów Core, najmocniejsza wśród układów ogólnego przeznaczenia firmy Intel do komputerów stacjonarnych. W szczególności liczba rdzeni nawet w najskromniejszych modelach wynosi co najmniej 6. Takie układy są używane głównie w komputerach do gier.

— Xeon. Wysokiej klasy procesory Intel, możliwości których wykraczają poza standardowe układy do komputerów stacjonarnych. Zaprojektowane do użytku specjalistycznego, wśród komputerów stacjonarnych znajdują się głównie w wydajnych stacjach roboczych.

— AMD FX. Rodzina procesorów AMD, pozycjonowana jako wysokowydajne i jednocześnie niedrogie rozwiązania - w tym dla systemów do gier. Co ciekawe, niektóre modele są standardowo dostarczane z chłodzeniem wodnym.

— Ryzen 3. Układy AMD Ryzen (wszystkie serie) są sprzedawane jako wysokiej klasy rozwiązania dla graczy, programistów, grafików i edytorów wideo. To właśnie wśród tych układów AMD zapoczątkowało mikroarchitekturę Zen, która wprowadziła jednoczesną wielowątkowość, co znacznie zwiększyło liczbę operacji na cykl przy tej samej częstotliwości taktowania. A Ryzen 3 to najtańsza i najskromniejsza pod względem właściwości rodzina wśród „Ryzenów”. Takie procesory są produkowane przy użyciu tych samych technologii, co starsze serie, jednak w Ryzen 3 połowa rdzeni obliczeniowych jest dezaktywowana. Niemniej jednak w tej linii znajdują się dość wydajne modele, w tym te przeznaczone do konfiguracji gier i stacji roboczych.

— Ryzen 5. Rodzina procesorów Ryzen ze średniej półki. Druga seria na tej architekturze, wydana w kwietniu 2017 roku jako tańsza alternatywa dla układów Ryzen 7. Układy Ryzen 5 mają nieco skromniejszą wydajność (w szczególności niższe taktowanie i, w niektórych modelach, pamięć podręczną L3). Poza tym są one całkowicie podobne do „siódemki” i są również pozycjonowane jako wysokowydajne układy do gier i stacji roboczych.

— Ryzen 7. Historycznie pierwsza seria procesorów AMD oparta na mikroarchitekturze Zen (zobacz „Ryzen 3” powyżej, aby uzyskać więcej szczegółów). Jedna ze starszych rodzin wśród „Ryzenów”, pod względem wydajności ustępuje jedynie linii Threadripper; wiele komputerów stacjonarnych opartych na tych układach to modele do gier.

— Ryzen 9. Debiut procesorów AMD Ryzen 9 opartych na mikroarchitekturze Zen miał miejsce w 2019 roku. Seria ta stała się topową wśród wszystkich Ryzenów, wypierając Ryzena 7 ze szczytu podium. Pierwsze modele Ryzen 9 miały 12 rdzeni i 24 wątki, później liczba ta została zwiększona do 16 i 32. Procesory z tej linii są zwykle używane do zadań profesjonalnych: projektowania, edycji wideo, renderowania 3D, gier, streamingu oraz innych zastosowań wymagających dużej mocy obliczeniowej.

— Ryzen Threadripper. Specjalistyczne procesory klasy Hi-End zaprojektowane z myślą o maksymalnej wydajności. Montowane są głównie w systemach do gier i stacjach roboczych.

— Apple M1. Seria procesorów firmy Apple wprowadzona w listopadzie 2020 r. Należą do rozwiązań mobilnych (patrz „Rodzaj” powyżej), są wykonywane zgodnie ze schematem system-on-chip: pojedynczy moduł łączy procesor, kartę graficzną, pamięć RAM (w pierwszych modelach - 8 lub 16 GB), półprzewodnikowy dysk NVMe i kilka innych komponentów (w szczególności kontrolery Thunderbolt 4). W związku z tym wśród komputerów stacjonarnych głównym obszarem zastosowania takich układów są kompaktowe nettopy. Jeśli chodzi o specyfikacje, w oryginalnych konfiguracjach procesory M1 są wyposażone w 8 rdzeni - 4 wydajne i 4 ekonomiczne; te ostatnie, według ich twórców, zużywają 10 razy mniej energii niż te pierwsze. To, w połączeniu z pięcionanometrowym procesem technologicznym, zaowocowało jednocześnie bardzo wysoką energooszczędnością i wydajnością.

— Apple M1 Max. Bezkompromisowo potężny SoC z naciskiem na maksymalizację wydajności komputera stacjonarnego Apple przy wykonywaniu skomplikowanych zadań. Linia Apple M1 Max została wprowadzona jesienią 2021 roku, zadebiutowała na pokładzie komputerów Mac Studio.

Apple M1 Max składa się z 10 rdzeni: 8 z nich są wydajne, a 2 kolejne energooszczędne. Maksymalna ilość wbudowanej połączonej pamięci sięga 64 GB, „pułap” jej przepustowości to 400 GB/s. Wydajność graficzna wersji Max systemu jednoukładowego M1 jest około dwa razy większa niż Apple M1 Pro. Układ zawiera ponad 57 miliardów tranzystorów. Do jego konstrukcji wprowadzono również dodatkowy akcelerator dla profesjonalnego kodeka wideo ProRes, który umożliwia łatwe odtwarzanie wielu strumieni wysokiej jakości wideo ProRes w rozdzielczościach kadru 4K i 8K.

— Apple M1 Ultra. Formalnie chip M1 Ultra składa się z dwóch procesorów Apple M1 Max opartych na UltraFusion, co pozwala na przesyłanie informacji z prędkością do 2,5 Tb/s. W języku liczb ten tandem składa się z 20 rdzeni obliczeniowych ARM (16 wysokowydajnych i 4 energooszczędne), 64-rdzeniowego podsystemu graficznego i 32-rdzeniowej jednostki obliczeń neuronowych. System na czipie obsługuje do 128 GB łącznej pamięci. W obudowie procesora znajduje się około 114 miliardów tranzystorów. Głównym przeznaczeniem Apple M1 Ultra jest pewna praca ze złożonymi aplikacjami, intensywnie korzystającymi z zasobów w rodzaju przetwarzania wideo 8K lub renderowania 3D. W życiu procesor można ujrzeć na pokładzie komputerów stacjonarnych Mac Studio.

Oprócz serii opisanych powyżej, we współczesnych komputerach stacjonarnych można znaleźć następujące procesory:

AMD Fusion A4. Cała rodzina procesorów Fusion została pierwotnie zaprojektowana jako urządzenia ze zintegrowaną kartą graficzną, które łączą jednostkę centralną i kartę graficzną w jednym układzie; takie układy nazywane są APU - Accelerated Processing Unit. Serie z oznaczeniem „A” są wyposażone w najpotężniejszą zintegrowaną grafikę w rodzinie, która w niektórych przypadkach może konkurować na równi z niedrogimi dedykowanymi kartami graficznymi. Im wyższa liczba w oznaczeniu serii, tym jest bardziej zaawansowana ona jest; A4 to najskromniejsza seria Fusion A.

AMD Fusion A6. Seria procesorów z linii Fusion A jest stosunkowo skromna, jednak nieco bardziej zaawansowana niż A4. Aby zapoznać się ze wspólnymi właściwościami wszystkich urządzeń Fusion A, zobacz „AMD Fusion A4” powyżej.

AMD Fusion A8. Dość zaawansowana seria procesorów Fusion A, średnia opcja pomiędzy stosunkowo skromnymi A4 i A6, a high-endowymi A10 i A12. Aby zapoznać się ze wspólnymi właściwościami wszystkich urządzeń Fusion A, zobacz „AMD Fusion A4” powyżej.

— AMD Fusion A9. Kolejna zaawansowana seria z rodziny Fusion A, nieco gorsza tylko od serii A10 i A12. Aby zapoznać się ze wspólnymi właściwościami wszystkich urządzeń Fusion A, zobacz „AMD Fusion A4” powyżej.

AMD Fusion A10. Jedna z najlepszych serii w linii Fusion A. Aby zapoznać się z ogólnymi właściwościami tej linii, zobacz „AMD Fusion A4” powyżej.

— AMD Fusion A12. Topowa seria z linii APU Fusion A, wprowadzona w 2015 roku; pozycjonuje się jako profesjonalne procesory z zaawansowanymi (nawet według standardów APU) możliwościami graficznymi. Aby zapoznać się z ogólnymi właściwościami linii Fusion A, zobacz AMD Fusion A4 powyżej.

— Seria AMD E. Ta seria procesorów należy do APU, podobnie jak opisana powyżej Fusion A, jednak zasadniczo różni się specjalizacją: głównym obszarem zastosowania serii E są urządzenia kompaktowe, w przypadku komputerów stacjonarnych — głównie nettopy (patrz „Rodzaj”). W związku z tym procesory te charakteryzują się kompaktowością, niskim rozpraszaniem ciepła i zużyciem energii, jednak ich moc obliczeniowa jest również niska.

— Athlon X4. Seria niedrogich procesorów klasy konsumenckiej, pierwotnie wydanych w 2015 roku jako stosunkowo niedrogie i jednocześnie stosunkowo wydajne rozwiązania dla gniazda FM+.

— AMD G. Rodzina ultrakompaktowych i energooszczędnych procesorów AMD, wykonanych na zasadzie „system na chipie” (SoC). W przeciwieństwie do wielu podobnych układów wykorzystuje architekturę x86, a nie ARM. Pozycjonuje się jako rozwiązanie dla urządzeń z naciskiem na grafikę, w szczególności do gier. Nie ma jednak mowy o komputerach stacjonarnych do gier: podobnie jak większość procesorów o podobnej specyfikacji, AMD G występuje głównie w cienkich klientach (patrz „Rodzaj”).

— VIA. Procesory firmy o tej samej nazwie, związane głównie z energooszczędnymi rozwiązaniami „mobilnymi” – w szczególności wiele modeli VIA jest bezpośrednio porównywanych do Intel Atom. Jednak pomimo skromnej wydajności takie procesory można znaleźć nawet wśród systemów stacjonarnych; a w przyszłości firma planuje stworzyć pełnowartościowe układy do komputerów stacjonarnych, konkurując z AMD i Intel.

— ARM Cortex-A. Grupa procesorów firmy ARM - twórcy mikroarchitektury o tej samej nazwie i największego producenta układów na niej opartych. Cechą tej mikroarchitektury w porównaniu z klasyczną x86 jest tzw. zredukowany zestaw instrukcji (RISC): procesor działa z uproszczonym zestawem instrukcji. To nieco ogranicza funkcjonalność, jednak pozwala na tworzenie bardziej kompaktowych, „zimnych” i jednocześnie wydajnych układów. Z wielu powodów architektura ARM jest wykorzystywana głównie w procesorach „mobilnych” przeznaczonych dla smartfonów, tabletów itp. To samo dotyczy serii ARM Cortex-A; takie procesory są rzadko instalowane w komputerach stacjonarnych i zwykle chodzi o kompaktowe, skromne urządzenie, takie jak „cienki klient” (patrz „Rodzaj”).

— nVidia Tegra. Początkowo procesory te zostały stworzone z myślą o urządzeniach przenośnych, jednak ostatnio zaczęto je instalować na komputerach stacjonarnych, głównie w komputerach All-In-One. Są to urządzenia typu „system-on-chip”, które wykorzystują nie „desktopową” architekturę x86, a „mobilną” ARM, co wymaga użycia odpowiednich systemów operacyjnych; najczęściej używane przez system Android (patrz „Preinstalowany system operacyjny”).

— Armada. Kolejna odmiana procesorów w architekturze ARM, pozycjonowana jako wysokowydajne rozwiązania do przetwarzania w chmurze i serwerów domowych, w tym NAS. Występuje w pojedynczych modelach „cienkich klientów” (patrz „Rodzaj”).

— Tera. Wyspecjalizowana rodzina procesorów zaprojektowana specjalnie dla „cienkich klientów” (patrz „Rodzaj”) i zasadniczo różni się od klasycznych procesorów (zarówno pełnowymiarowych, jak i kompaktowych). Systemy oparte na Tera są zwykle pełnoprawnymi „klientami zerowymi” (zero client), absolutnie niezdolnymi do samodzielnej pracy. Innymi słowy są to urządzenia przeznaczone do tworzenia „wirtualnego pulpitu”: użytkownik pracuje z interfejsem i urządzeniami końcowymi (monitor, klawiatura, mysz itp.), jednak wszystkie operacje odbywają się na serwerze. Pozwala to na zwiększenie bezpieczeństwa podczas pracy z danymi wrażliwymi. Jednak w bardziej tradycyjnych komputerach stacjonarnych procesory Tera są prawie nie do stosowania.

Przestarzałe serie procesorów, które nadal można spotkać w użyciu (jednak nie w sprzedaży), obejmują Sempron, Phenom II i Athlon II firmy AMD oraz Core 2 Quad i Core 2 Duo firmy Intel.

Zwróć uwagę, że w sprzedaży są konfiguracje, które nie są wyposażone w procesor - z myślą, że użytkownik może go wybrać według własnego uznania; jest to jednak dość rzadka opcja.

Model

Konkretny model procesora zainstalowanego w komputerze, a raczej jego oznaczenie w serii (patrz „Procesor”). Pełna nazwa modelu składa się z nazwy serii i tego oznaczenia - na przykład Intel Core i3 3220; znając tę nazwę, możesz znaleźć szczegółowe informacje o procesorze (specyfikacja, recenzje, opinie itp.) i określić, w jaki sposób odpowiada on Twoim celom.

Liczba rdzeni

Liczba rdzeni w procesorze dostarczanym w zestawie z komputerem stacjonarnym.

Rdzeń jest częścią procesora przeznaczoną do przetwarzania jednego wątka poleceń (a czasami więcej, w takich przypadkach patrz „Liczba wątków”). W związku z tym obecność kilku rdzeni pozwala procesorowi pracować jednocześnie z kilkoma takimi wątkami, co ma pozytywny wpływ na wydajność. Co prawda, należy pamiętać, że większa liczba rdzeni nie zawsze oznacza wyższą moc obliczeniową - wiele zależy od tego, jak zorganizowana jest interakcja między wątkami instrukcji, jakie specjalne technologie są zaimplementowane w procesorze itp. Można więc porównywać tylko liczbę układów z rdzeniami o tym samym przeznaczeniu (desktopowe, mobilne) i podobnych seriach (patrz „Procesor”).

Ogólnie rzecz biorąc, procesory jednordzeniowe praktycznie nie występują we współczesnych komputerach stacjonarnych. Dwurdzeniowe procesory są używane głównie w układach desktopowych poziomu podstawowego i średniego. Cztery rdzenie znajdują się zarówno w średnich, jak i zaawansowanych procesorach do komputerów stacjonarnych, jak i rozwiązaniach mobilnych. Sześciordzeniowe i ośmiordzeniowe procesory są typowe dla wysokowydajnych desktopowych procesorów używanych w stacjach roboczych i systemach do gier.

Częstotliwość taktowania

Szybkość zegara procesora zamontowanego w PC.

Teoretycznie wyższa częstotliwość taktowania ma pozytywny wpływ na wydajność, ponieważ pozwala procesorowi wykonywać więcej operacji w jednostce czasu. Wartość ta jest jednak dość słabo powiązana z realną wydajnością. Faktem jest, że rzeczywiste możliwości procesora silnie zależą od wielu innych czynników — architektury, pojemności pamięci podręcznej, liczby rdzeni, obsługi specjalnych instrukcji itp. Podsumowując, porównywać według tej wartości można tylko układy z tej samej lub podobnej serii (patrz „Procesor”), a najlepiej — z tej samej generacji.

Częstotliwość TurboBoost / TurboCore

Częstotliwość taktowania procesora podczas pracy w trybie TurboBoost lub TurboCore.

Technologia Turbo Boost jest stosowana w procesorach Intel, Turbo Core — w procesorach AMD. Istota tej technologii jest tam i tam taka sama: jeśli niektóre rdzenie pracują pod dużym obciążeniem, a niektóre są bezczynne, to część zadań jest przenoszona z bardziej obciążonych rdzeni na mniej obciążone, co poprawia wydajność. Zwykle zwiększa to częstotliwość taktowania procesora; wartość ta jest wskazana w tym punkcie. Więcej ogólnych informacji na temat częstotliwości taktowania znajduje się powyżej.

Pojemność pamięci RAM

Ilość pamięci o dostępie swobodnym (pamięć główna lub RAM) dostarczonej w zestawie z komputerem.

Od tego parametru zależy bezpośrednio ogólna wydajność komputera: przy pozostałych warunkach równych, więcej pamięci RAM przyspiesza pracę, pozwala radzić sobie z bardziej zasobożernymi zadaniami i ułatwia jednoczesne wykonywanie dużej liczby procesów. Jeśli chodzi o konkretne liczby, minimalna pojemność wymagana do stabilnej pracy komputera ogólnego przeznaczenia wynosi teraz 4 GB. Dla mikrokomputerów i cienkich klientów mniejsza pojemność jest wystarczająca, podczas gdy w systemach do gier jest zainstalowanych co najmniej 8 GB. 16 GB, a tym bardziej 32 GB – to już bardzo solidne pojemności, a w najmocniejszych i wydajniejszych systemach pojawiają się wartości 64 GB i nawet więcej. Również w sprzedaży można znaleźć konfiguracje bez pamięci RAM - w przypadku takiego urządzenia użytkownik może wybrać pojemność pamięci według własnego uznania; z wielu powodów ta konfiguracja jest szczególnie popularna w nettopach.

Zwróć uwagę, że wiele nowoczesnych komputerów umożliwia zwiększenie ilości pamięci RAM, więc nie zawsze ma sens kupowanie drogiego urządzenia z dużą ilością pamięci RAM - czasami rozsądniej jest zacząć od prostszego modelu i rozszerzyć go, jeśli pojawia...się potrzeba. Możliwość uaktualnienia w takich przypadkach powinna zostać wyjaśniona oddzielnie.
ASRock DeskMini 110 często porównują