Polska
Katalog   /   Komputery   /   Sprzęt sieciowy   /   Switche

Porównanie Cisco SG500-52 vs Cisco WS-C3750X-24P-S

Dodaj do porównania
Cisco SG500-52
Cisco WS-C3750X-24P-S
Cisco SG500-52Cisco WS-C3750X-24P-S
od 4 534 zł
Produkt jest niedostępny
od 1 845 zł
Produkt jest niedostępny
TOP sprzedawcy
Rodzajzarządzalny warstwy 2 (L2)zarządzalny warstwy 3 (L3)
MontażRACKRACK
Porty
Gigabit Ethernet50 szt.24 szt.
SFP (światłowód)4 szt.
Port konsolowy
Funkcje i możliwości
Zarządzanie
SSH
Telnet
przeglądarka www
SNMP
 
 
przeglądarka www
SNMP
Podstawowe funkcje
serwer DHCP
funkcja stackowania
Link Aggregation
VLAN
ochrona przed pętlami
ograniczenie prędkości dostępu
 
funkcja stackowania
 
VLAN
 
 
Routing
Statyczny
PoE
PoE (wyjście)802.3af/at
Liczba wyjść z obsługą PoE24 szt.
Moc wyjściowa PoE30 W
Moc całkowita PoE870 W
Dane ogólne
Zasilaczwbudowanywbudowany
Wymiary (SxGxW)440x44x257 mm
Waga3950 g
Data dodania do E-Katalogpaździernik 2016maj 2016

Rodzaj

- Niekontrolowany. Najprostszy typ przełącznika, który nie ma, jak sama nazwa wskazuje, możliwości zarządzania; a możliwość monitorowania stanu urządzenia ogranicza się zazwyczaj do najprostszych wskaźników w postaci żarówek (zasilanie, aktywność portu). Zaletami takich modeli są autonomia, łatwość użytkowania i niski koszt. Główna wada tego typu jest oczywista - niemożność dostosowania parametrów pracy. Przełączniki niezarządzane doskonale nadają się do małych sieci LAN, takich jak dom lub małe biuro, gdzie nie są wymagane żadne specjalne poprawki administracyjne; jednak nie powinny być używane w dużych organizacjach.

- Konfigurowalny. Ta kategoria obejmuje przełączniki, które mogą zmieniać niektóre parametry pracy. Jednocześnie możliwości takich zmian są znacznie mniejsze niż w modelach zarządzanych, a sprawa zwykle ogranicza się do wyłączania poszczególnych portów, przełączania standardowych prędkości na złącza Ethernet (np. ze 100 Mb/s na 10 Mb/s) i najprostszego monitoringu narzędzia takie jak przeglądanie statystyk sieciowych. Ponadto po rekonfiguracji urządzenie zwykle wymaga ponownego uruchomienia - innymi słowy nie ma możliwości kontrolowania działania przełącznika „w locie”. Niemniej jednak do tego typu mogą należeć profesjonalne modele przeznaczone dla dużych sieci.

- Zarządzane 2 poziomy. Termin „zarządzany” oznacza, że przełącznik ma możliwość re...konfiguracji w locie, w przeciwieństwie do konfigurowalnych modeli opisanych powyżej. Ponadto ogólna funkcjonalność takich urządzeń jest w większości przypadków znacznie szersza. A „poziom 2” oznacza, że urządzenie obsługuje tylko drugą warstwę modelu sieci OSI – kanałową, która odpowiada za adresowanie fizyczne. W praktyce oznacza to, że przełącznik może pracować z adresami MAC podłączonych urządzeń, ale adresowanie IP przekracza jego możliwości.

- Kontrolowane 3 poziomy. Rodzaj zarządzanych przełączników (patrz wyżej) obsługujących trzecią warstwę modelu sieci OSI. Ta warstwa odpowiada za logiczne adresowanie i routing, które umożliwiają urządzeniu pracę z adresami IP. Z tego powodu modele tego typu uważane są za najbardziej zaawansowane, często zapewniają nie tylko tradycyjne możliwości „przełączników”, ale także osobne funkcje routerów. Z drugiej strony obfitość możliwości znacząco wpływa na cenę. Takie przełączniki są powszechnie stosowane w centrach danych, firmach telekomunikacyjnych i innych miejscach związanych z profesjonalnym użytkowaniem sieci; nie ma sensu kupować takiego urządzenia do domu lub małego biura.

Gigabit Ethernet

Liczba standardowych złączy RJ-45 formatu Gigabit Ethernet, przewidziana w konstrukcji urządzenia.

Jak sama nazwa wskazuje, złącza te zapewniają transfer danych z prędkością do 1 GB/s. Początkowo Gigabit Ethernet był uważany za standard profesjonalny, a nawet dziś realna potrzeba takich prędkości występuje głównie przy wykonywaniu zadań specjalnych. Niemniej jednak nawet stosunkowo niedrogie komputery są obecnie wyposażone w gigabitowe karty sieciowe, nie mówiąc już o bardziej zaawansowanym sprzęcie.

Jeśli chodzi o liczbę złączy, odpowiada ona liczbie urządzeń sieciowych, które można podłączyć bezpośrednio do „przełącznika”, bez użycia dodatkowego sprzętu. W przypadku Gigabit Ethernet liczba złączy do 10 włącznie jest uważana za stosunkowo niewielką, od 10 do 25 - średnią, a obecność ponad 25 portów tego typu jest typowa dla modeli poziomu profesjonalnego. Warto zaznaczyć, że w niektórych „przełącznikach” poszczególne złącza tego typu łączone są ze złączem optycznym SFP lub SFP+ (patrz poniżej). Złącza te są oznaczone jako „combo” i są uwzględniane zarówno przy podliczaniu RJ-45, jak i SFP/SFP+.

SFP (światłowód)

Liczba portów optycznych w standardzie SFP przewidziana w konstrukcji przełącznika.

Transmisja danych za pomocą kabla światłowodowego jest wygodna, ponieważ taki kabel nie jest podatny na zakłócenia elektromagnetyczne; a prędkość połączenia przez SFP może osiągnąć 2,7 Gb/s. Jednocześnie czyste włókno jest rzadko używane, więc nawet zaawansowane przełączniki zapewniają niewielką liczbę portów SFP - znacznie mniej niż Ethernet jednego lub drugiego typu (patrz wyżej). Tak więc najbardziej rozpowszechnione są rozwiązania na 2 złącza lub 4 złącza tego typu, chociaż jest ich więcej - 6, 8, a nawet 10 i więcej. Należy pamiętać, że przełączniki mogą używać tak zwanych złączy combo, które łączą SFP i Ethernet; obecność takich portów jest określona w uwagach, są one brane pod uwagę zarówno przy obliczaniu sieci LAN, jak i przy obliczaniu SFP. W każdym razie połączenie światłowodowe jest często używane jako łącze w górę (patrz poniżej).

Zauważ również, że w tym przypadku mówimy o oryginalnym standardzie SFP; dane dotyczące złączy w formacie SFP + są wskazane osobno (patrz poniżej).

Port konsolowy

Obecność portu konsoli w przełączniku. Złącze to służy do sterowania ustawieniami urządzenia z osobnego komputera, który pełni rolę panelu sterowania - konsoli. Zaletą tego typu operacji jest to, że dostęp do funkcji przełącznika jest niezależny od warunków sieciowych; ponadto możesz użyć specjalnych narzędzi na konsoli, które zapewniają bardziej rozbudowane możliwości niż zwykły interfejs sieciowy lub protokoły sieciowe (patrz „Sterowanie”). Najczęściej port konsoli wykorzystuje złącze RS-232.

Zarządzanie

Metody i protokoły zarządzania obsługiwane przez przełącznik.

- SSH. Skrót od Secure Shell, tj. „Bezpieczna powłoka”. SSH zapewnia dość wysoki stopień bezpieczeństwa, ponieważ szyfruje wszystkie przesyłane dane, m.in. Hasła. Nadaje się do zarządzania prawie wszystkimi głównymi protokołami sieciowymi, ale do działania wymaga specjalnego narzędzia na komputerze sterującym.

- Telnet. Protokół kontroli sieci, który można skonfigurować za pomocą tekstowego wiersza poleceń. Nie stosuje szyfrowania i nie chroni przesyłanych danych, a także pozbawiony jest interfejsu graficznego, dlatego w wielu obszarach jest wypierany przez opcje bezpieczniejsze (SSH) lub wygodne (webowe). Jednak nadal jest używany w nowoczesnym sprzęcie sieciowym.

- Interfejs sieciowy. Funkcja ta umożliwia otwarcie interfejsu zarządzania przełącznikami w zwykłej przeglądarce internetowej. Główną wygodą interfejsu internetowego jest to, że nie wymaga dodatkowego oprogramowania - wystarczy przeglądarka (i jest dostępna w każdym "szanującym się" nowoczesnym systemie operacyjnym). Dzięki temu, znając adres urządzenia, login i hasło, można zarządzać ustawieniami z niemal każdego komputera w sieci (o ile oczywiście w parametrach dostępu nie określono inaczej).

- SNMP. Skrót od Simple Network Management Protocol, tj. "Simple Network Management Protocol...". Jest to standardowa część ogólnego protokołu TCP/IP, na której zbudowany jest zarówno Internet, jak i wiele sieci lokalnych. Wykorzystuje dwa rodzaje oprogramowania - "menedżerów" na komputerach sterujących i "agentów" na komputerach kontrolowanych (w tym przypadku na routerze). Bezpieczeństwo jest stosunkowo niskie, ale SNMP może być używane do prostych zadań zarządzania.

Pamiętaj, że ta lista nie jest wyczerpująca — nowoczesne przełączniki mogą zapewniać inne możliwości zarządzania, na przykład obsługę zastrzeżonych narzędzi i specjalnych technologii tego samego producenta.

Podstawowe funkcje

- Serwer DHCP. Funkcja ułatwiająca sterowanie adresami IP urządzeń podłączonych do przełącznika. Prawidłowa praca urządzenia sieciowego jest niemożliwa bez własnego adresu IP; a obsługa DHCP umożliwia przypisanie tych adresów ręcznie lub w pełni automatycznie. W takim przypadku administrator może ustawić dodatkowe parametry dla trybu automatycznego (zakres adresów, maksymalny czas użytkowania jednego adresu). I nawet w trybie całkowicie ręcznym praca z adresami odbywa się tylko za pomocą samego przełącznika (podczas gdy bez DHCP parametry te musiałyby być zapisane w ustawieniach każdego urządzenia w sieci).

- Wsparcie sztaplowania. Możliwość obsługi urządzenia w trybie stosu. Stos składa się z kilku przełączników, postrzeganych przez sieć jako jeden „przełącznik”, z jednym adresem MAC, jednym adresem IP i całkowitą liczbą złączy równą całkowitej liczbie portów we wszystkich zaangażowanych urządzeniach. Funkcja ta jest przydatna, jeśli chcesz zbudować dużą sieć, w której brakuje możliwości jednego „przełącznika”, ale nie chcesz komplikować topologii.

- Agregacja łączy. Przełącz obsługę technologii agregacji łączy. Technologia ta pozwala na połączenie kilku równoległych fizycznych kanałów komunikacyjnych w jeden logiczny, co zwiększa szybkość i niezawodność połączenia. Mówiąc najprościej, przełącznik z taką funkcją można podłączyć do innego urządzenia (na p...rzykład routera) nie jednym kablem, ale dwoma lub nawet kilkoma kablami jednocześnie. W tym przypadku wzrost prędkości następuje z powodu sumowania przepustowości wszystkich kanałów fizycznych; jednak ogólna prędkość może być mniejsza niż suma prędkości - z drugiej strony łączenie kilku stosunkowo wolnych złączy jest często tańsze niż używanie sprzętu z bardziej zaawansowanym pojedynczym interfejsem. Wzrost niezawodności odbywa się, po pierwsze, poprzez rozłożenie całkowitego obciążenia na oddzielne kanały fizyczne, a po drugie, dzięki „gorącej” nadmiarowości: awaria jednego portu lub kabla może zmniejszyć prędkość, ale nie prowadzi do całkowitego przerwanie połączenia, ale po wznowieniu działania kanał jest automatycznie aktywowany.
Należy zauważyć, że zarówno standardowy protokół LACP, jak i niestandardowe, zastrzeżone technologie mogą być używane do agregacji łączy (ta ostatnia jest typowa na przykład dla przełączników Cisco). Ponadto istnieje wiele alternatywnych nazw dla tej technologii — trunking portów, łączenie łączy itp. czasami różnica tkwi tylko w nazwie, czasami pojawiają się niuanse techniczne. Wszystkie te szczegóły należy wyjaśnić osobno.

- VLAN. Przełącznik obsługuje funkcję VLAN - wirtualne sieci lokalne. W tym przypadku znaczeniem tej funkcji jest możliwość tworzenia oddzielnych logicznych (wirtualnych) sieci lokalnych w ramach fizycznego „obszaru lokalnego”. W ten sposób można np. podzielić działy w dużej organizacji, tworząc dla każdego z nich własną sieć lokalną. Organizacja VLAN może zmniejszyć obciążenie sprzętu sieciowego, a także zwiększyć stopień ochrony danych.

- Ochrona pętli. Zabezpieczenie pętli w przełączniku. Pętlę w tym przypadku można opisać jako sytuację, w której ten sam sygnał jest wyzwalany w sieci w nieskończonej pętli. Może to wynikać z niewłaściwego okablowania, użycia nadmiarowych łączy i innych przyczyn, ale w każdym przypadku takie zjawisko może „uśpić” sieć, co oznacza, że jest wysoce niepożądane. Ochrona pozwala uniknąć pętli — zwykle poprzez wyłączenie zapętlonych portów.

- Ograniczenie szybkości dostępu. Możliwość ograniczenia szybkości wymiany danych dla poszczególnych portów przełącznika. Dzięki temu możliwe jest zmniejszenie obciążenia sieci i zapobieganie „zatykaniu” kanału przez poszczególne terminale.

Pamiętaj, że ta lista nie ogranicza się do: nowoczesne przełączniki mogą mieć inne funkcje.

Statyczny

Przypomnijmy, że routing jest definicją najlepszej ścieżki, wzdłuż której każdy pakiet danych może być dostarczony do odbiorcy. W tym celu wykorzystywane są specjalne tabele, które są przechowywane w pamięci sterującego urządzenia sieciowego z funkcją routingu. Zgodnie z metodą wypełniania tych tabel, procedura ta jest podzielona na dwa główne typy - statyczny i dynamiczny.

Routing statyczny to metoda, w której wszystkie trasy danych (wpisy w tablicy routingu) są ręcznie rejestrowane przez administratora; dotyczy to zarówno początkowego tworzenia tabeli, jak i wprowadzania w niej zmian w przypadku zmiany konfiguracji sieci. Główną zaletą tej metody jest minimalne obciążenie procesora przełącznika, co pozytywnie wpływa na szybkość i niezawodność sieci. Główne wady routingu statycznego wiążą się z koniecznością ręcznego sterowania. Tak więc im szersza sieć, tym bardziej złożone i pracochłonne jest zarządzanie nią; nieuwaga administratora może stać się dodatkowym powodem awarii; a diagnoza niektórych problemów jest zauważalnie trudna - na przykład w przypadku awarii na poziomie łącza trasa statyczna pozostaje widoczna jako aktywna, chociaż żadne dane nie są przesyłane.

PoE (wyjście)

Przełącznik obsługuje funkcję Power over Ethernet.

Funkcja ta umożliwia dostarczanie zasilania z przełącznika do urządzeń sieciowych za pośrednictwem tego samego kabla Ethernet, który przenosi dane. Zmniejsza to liczbę przewodów i upraszcza organizację zasilania, co jest szczególnie wygodne, jeśli urządzenie jest zainstalowane w trudno dostępnym miejscu, w którym nie ma gniazdka w pobliżu i trudno jest wyciągnąć dodatkowy kabel. Przykładem jest montowana na suficie kamera do monitoringu IP.

Liczba wyjść obsługujących PoE może się różnić. Należy również pamiętać, że w przypadku jednoczesnego podłączenia kilku odbiorców obowiązują określone ograniczenia mocy; zobacz Całkowita moc PoE, aby uzyskać szczegółowe informacje.

W związku z tym takie urządzenia są znacznie droższe niż przełączniki bez PoE.

Liczba wyjść z obsługą PoE

Liczba wyjść z obsługą PoE (patrz wyżej), przewidziana w konstrukcji switcha. Ta liczba odpowiada maksymalnej liczbie urządzeń sieciowych zasilanych przez PoE, które można jednocześnie podłączyć do tego modelu.
Dynamika cen
Cisco SG500-52 często porównują