Rodzaj urządzenia
—
Autonomiczny falownik. Przetwornice napięcia i prądu, które nie są podłączone do zewnętrznej sieci elektrycznej. Mają one służyć jako część autonomicznych systemów fotowoltaicznych – takie falowniki wytwarzają prąd, który jest wydatkowany wyłącznie na potrzeby gospodarstwa domowego. Może być zużywany bezpośrednio przez urządzenia gospodarstwa domowego lub gromadzony w bateriach. Ten typ falownika jest często nazywany off-grid.
—
Falownik sieciowy. Falowniki pracujące synchronicznie z zewnętrzną siecią zasilającą. Przeznaczone są do zamiany energii słonecznej na prąd przemienny o parametrach sieci ogólnej. Falowniki przyłączane do sieci stosowane są w układach bezbateryjnych – cała wytworzona energia wykorzystywana jest na własne potrzeby, a nadwyżka przekazywana jest do sieci po „taryfie gwarantowanej”. W tym celu dostosowywane są niektóre wskaźniki wytwarzanej energii elektrycznej, w szczególności eliminowane są różnice amplitud, wyrównywana częstotliwość sieci itp. Falowniki sieciowe nazywane są również falownikami on-grid.
—
Falownik hybrydowy. Falowniki akumulatorowo-sieciowe to unikalne hybrydy przetwornic autonomicznych i sieciowych. Właściwie to stąd wzięła się nazwa hybryda. Falowniki tego typu współpracują z łańcuchami akumulatorów, a nadwyżka energii elektrycznej przesyłana jest do sieci ogólnej. Zapewnia to niezależność energetyczną systemu op
...artego na panelach słonecznych z możliwością wykorzystania energii zgromadzonej w akumulatorach bez odłączania od sieci. Na przykład, jeśli priorytetem jest zasilanie prądem stałym, energia jest dostarczana głównie z akumulatorów, a wszelkie niedobory energii są dostarczane z sieci zewnętrznej. Przyda się to w przypadku złych warunków pogodowych lub braku prądu generowanego przez panele fotowoltaiczne. Jeżeli energia elektryczna jest wytwarzana w nadmiarze, nadwyżka energii jest uwalniana do sieci ogólnej według „taryfy gwarantowanej”.Napięcie robocze PV
Zakres pracy falownika zwykle mieści się pomiędzy napięciem początkowym a napięciem maksymalnym. Odstęp ten jest podawany w woltach.
Interfejsy
Interfejsy przyłączeniowe przewidziane w konstrukcji falownika dla paneli fotowoltaicznych.
-
RS232. Specjalistyczny interfejs komunikacyjny służący do bezpośredniego połączenia falownika z komputerem. Interfejs z reguły zapewnia możliwość całodobowego monitorowania systemów fotowoltaicznych z wykorzystaniem sieci lokalnej. Złącze RS232 można również wykorzystać do komunikacji kilku falowników ze sobą lub, rzadziej, do aktualizacji oprogramowania lub testów serwisowych.
-
RS485. Złącze, często używane do podłączenia kilku falowników do centralnego koncentratora, który z kolei łączy się z komputerem. Takie połączenie może być przydatne do skonfigurowania systemu wytwarzania energii słonecznej lub przesyłania danych monitorowania przez sieć.
-USB. Standardowy port USB jest często używany do konfiguracji sprzętu poprzez przewodowe połączenie z komputerem lub do aktualizacji oprogramowania sprzętowego falownika.
-
LAN (RJ45). Obecność złącza LAN (RJ45) w konstrukcji falownika. Porty te są powszechnie używane do połączeń przewodowych w sieciach komputerowych za pomocą skrętki komputerowej.
-
Wi-Fi. Moduł komunikacyjny Wi-Fi umożliwiający bezprzewodowe połączenie falownika z komputerem, laptopem lub telefonem komórkowym. Dzięki specjalistycznemu oprogramow
...aniu możesz odbierać dane z monitoringu z falownika bezpośrednio „bezprzewodowo” – przesyłanie informacji poprzez sieć Wi-Fi eliminuje konieczność stosowania przewodów.
— Bluetooth. Możliwość bezprzewodowego sparowania falownika ze smartfonami, tabletami lub laptopami poprzez Bluetooth. Dzięki synchronizacji danych użytkownik będzie mógł monitorować pracę sprzętu i zdalnie sterować falownikiem w zasięgu sieci bezprzewodowej Bluetooth.Zabezpieczenie
—
Zabezpieczenie przed przeciążeniem. Układ zabezpieczający przed podłączeniem obciążenia nietypowego, którego pobór mocy przekracza możliwości falownika do paneli fotowoltaicznych. W takich sytuacjach zasilanie gniazd jest automatycznie wyłączane, ponieważ przeciążenie urządzenia grozi awarią, a nawet pożarem. Zadziałaniu zabezpieczenia towarzyszy zwykle sygnał dźwiękowy i/lub świetlny.
—
Zabezpieczenie przed przegrzaniem. Zabezpieczenie to włącza się, gdy temperatura wewnątrz falownika krytycznie wzrasta. Gdy wystąpią takie sytuacje, urządzenie wyłącza się, co pozwala uniknąć awarii. W przyszłości niektóre modele będą włączać się automatycznie po normalizacji temperatury, inne będą musiały być włączane ręcznie. Należy pamiętać, że przegrzanie jest spowodowane nie tylko awarią, ale także całkowicie normalnymi przyczynami - na przykład długotrwałą pracą przy wysokich temperaturach powietrza. Zazwyczaj zabezpieczeniu przed przegrzaniem towarzyszy sygnał dźwiękowy i/lub świetlny.
—
Ochrona przed ↑ lub ↓ napięciem akumulatora. Układ zabezpieczający, który zapobiega zasilaniu falownika zbyt wysokim lub zbyt niskim napięciem z akumulatorów. Po przekroczeniu zakresu napięcia roboczego urządzenie automatycznie się wyłącza, aby uniknąć awarii i innych problemów. Sygnał dźwiękowy i/lub świetlny może ostrzec o włączeniu zabezpieczenia.
—
Zabezpieczenie przed zwarciem. Zabezpieczenie uruchamiane w przypadku krytycznego wzrostu prądu wyjściowego (na przykład z powodu przedostania się obcego metalowego przedmiotu pomiędzy części obciążenia pod napięciem). Aby uniknąć awarii i awarii, zasilanie na wyjściu falownika jest automatycznie wyłączane. Uruchomieniu układu zabezpieczającego towarzyszy zwykle sygnał dźwiękowy i/lub świetlny.
—
Zabezpieczenie przed odwrotną polaryzacją. System ochrony w przypadku nieprawidłowej polaryzacji podłączenia. Jeżeli „plus” i „minus” nie pasują, falownik zostaje odłączony od zasilania, aby uniknąć uszkodzenia elementów elektronicznych. Powiadomienie o zadziałaniu zabezpieczenia często następuje za pomocą sygnału dźwiękowego i/lub świetlnego.
— Klasa ochrony. Klasa ochrony przed kurzem i wilgocią, jaką zapewnia obudowa falownika do paneli fotowoltaicznych. Oznaczona zgodnie ze standardem IP dwiema liczbami: pierwsza (od 1 do 6) oznacza odporność na wnikanie ciał obcych i kurzu, druga (od 1 do 8) - ochronę przed wilgocią. Im wyższa liczba, tym wyższy poziom zapewnianej ochrony. Należy również pamiętać, że zamiast pierwszej cyfry w oznaczeniu stopnia ochrony można wskazać „X” - na przykład IPX7. W tym przypadku urządzenie nie posiada certyfikatu ochrony przed kurzem, chociaż w rzeczywistości poziom takiej ochrony może być dość wysoki. Tak więc w przykładzie z odpornością na wilgoć „7” obudowę można całkowicie zanurzyć w wodzie - co oznacza, że jest bardzo szczelnie zamknięta przed kurzem.
Stopień ochrony IP jest szczególnie ważny przy wyborze modeli do użytku na zewnątrz oraz montażu w pomieszczeniach o dużej wilgotności – to one są najbardziej podatne na niekorzystne wpływy środowiska.
Wysoka klasa IP zagwarantuje stabilną pracę falownika do paneli fotowoltaicznych w tak trudnych warunkach.
Chłodzenie
Sposób usuwania ciepła z elementów grzejnych falownika.
—
Chłodzenie pasywne. Chłodzenie pasywne to dowolny rodzaj chłodzenia, który nie wymaga wymuszonego usuwania ciepła i odbywa się poprzez naturalną wymianę ciepła i konwekcję. Jego główną zaletą jest całkowity brak hałasu. Ponadto tego typu urządzenia są tańsze, nie zużywają energii do obsługi układu chłodzenia i zajmują stosunkowo mało miejsca. Z drugiej strony chłodzenie pasywne jest znacznie gorsze od chłodzenia aktywnego pod względem wydajności i dlatego słabo nadaje się do wydajnych urządzeń.
—
Aktywne chłodzenie (wentylatory). Aktywne chłodzenie polega na wymuszonym odprowadzaniu ciepła z elementów urządzenia poprzez radiatory z wentylatorami, które „wydmuchują” nadmiar ciepła na zewnątrz obudowy. Układy takie charakteryzują się wyjątkowo dużą sprawnością i mogą być stosowane w falownikach dowolnej mocy. Trzeba będzie jednak pogodzić się ze zwiększonym poziomem hałasu, a także znacznymi wymiarami i wagą sprzętu. Ponadto wentylatory mają tendencję do wciągania kurzu do obudowy, a jeśli się zepsują, cały układ chłodzenia w zasadzie zawiedzie. Koszt falowników z aktywnym chłodzeniem jest znacznie wyższy niż modeli z pasywną zasadą odprowadzania ciepła z elementów wewnętrznych.