Polska
Katalog   /   Dom i remont   /   Zasilanie awaryjne   /   Inwertery i kontrolery

Porównanie Anern EVO Series SCI-EVO-10200 vs Anern EVO Series SCI-EVO-6200

Dodaj do porównania
Anern EVO Series SCI-EVO-10200
Anern EVO Series SCI-EVO-6200
Anern EVO Series SCI-EVO-10200Anern EVO Series SCI-EVO-6200
Produkt jest niedostępnyProdukt jest niedostępny
TOP sprzedawcy
Rodzaj urządzeniainwerter hybrydowyinwerter hybrydowy
Rodzaj sieci1 faza (230 V)1 faza (230 V)
Maks. sprawność98 %98 %
Wejście/wyjście prądu przemiennego
Nominalna moc wyjściowa10200 VA6200 VA
Moc nominalna10200 W6200 W
Moc szczytowa20400 W12400 W
Maksymalny prąd przemienny44.3 А27 А
Kształt napięcia wyjściowegoczysta sinusoidaczysta sinusoida
Akumulatory i ładowanie DC
Napięcie akumulatora48 В48 В
Liczba wejść akumulatorowych1 szt.1 szt.
Maksymalny prąd ładowania160 А120 А
Panele PV
Maks. moc wejściowa10.2 kW6.5 kW
Napięcie robocze PV90 – 450 В90 – 450 В
Kontroler2xMMPT1xMMPT
Funkcje i sterowanie
Funkcje
wbudowany monitoring
wbudowany monitoring
Interfejsy
Wi-Fi
Wi-Fi
LAN (RJ45)
Zabezpieczenie
zabezpieczenie przed zwarciem
zabezpieczenie przed przeciążeniem
zabezpieczenie przed zwarciem
zabezpieczenie przed ↑ lub ↓ napięcia akumulatora
zabezpieczenie przed przeciążeniem
zabezpieczenie przed przegrzaniem
Dane ogólne
Wyświetlaczkolorowykolorowy
Chłodzenieaktywne (wentylatory)aktywne (wentylatory)
Temperatura pracy-10 °C ~ +50 °C-10 °C ~ +50 °C
Wymiary530x390x130 mm450x350x110 mm
Waga14.5 kg10 kg
Data dodania do E-Kataloglistopad 2023listopad 2023
Glosariusz

Nominalna moc wyjściowa

Znamionowa moc wyjściowa falownika wyrażona w woltoamperach (VA). W rzeczywistości wskaźnik ten jest podobny do mocy w watach (W).

Parametr ten oznacza moc, jaką urządzenie może dostarczać odbiorcom przez nieograniczony czas. Należy wybrać według tego wskaźnika, aby moc znamionowa falownika pokrywała pobór mocy oczekiwanego obciążenia o około 15-20%. Warto również wziąć pod uwagę, że niektóre urządzenia elektryczne (w szczególności urządzenia z silnikami elektrycznymi - odkurzacze, lodówki itp.) zużywają znacznie więcej energii podczas uruchamiania niż po wejściu w tryb. W przypadku takiego obciążenia konieczne jest również określenie mocy szczytowej falownika (patrz odpowiedni punkt) - powinna ona być wyższa niż moc rozruchowa obciążenia.

Moc nominalna

Znamionowa moc wyjściowa falownika wyrażona w watach (W).

Parametr ten oznacza moc, jaką urządzenie może dostarczać odbiorcom przez nieograniczony czas. Należy wybrać według tego wskaźnika, aby moc znamionowa falownika pokrywała pobór mocy oczekiwanego obciążenia o około 15-20%. Warto również wziąć pod uwagę, że niektóre urządzenia elektryczne (w szczególności urządzenia z silnikami elektrycznymi - odkurzacze, lodówki itp.) zużywają znacznie więcej energii podczas uruchamiania niż po wejściu w tryb. W przypadku takiego obciążenia konieczne jest również określenie mocy szczytowej falownika (patrz odpowiedni punkt) - powinna ona być wyższa niż moc rozruchowa obciążenia.

Moc szczytowa

Największa całkowita moc wyjściowa w watach (W), jaką falownik może dostarczyć do obciążenia przez stosunkowo krótki okres czasu, rzędu 2 do 3 sekund. Z reguły moc ta jest o 30–50% większa niż moc znamionowa (patrz wyżej). Wartość obciążenia szczytowego może być przydatna przy obliczaniu współpracy falownika z urządzeniami, które w momencie rozruchu zużywają dużo energii (odkurzacze, pompy odwiertowe, elektronarzędzia itp.). Zasada jest tu prosta – moc szczytowa falownika nie może być niższa od mocy rozruchowej obciążenia.

Maksymalny prąd przemienny

Maksymalny prąd w amperach (A), jaki falownik podczas pracy jest w stanie generować bez przeciążeń i awarii.

Maksymalny prąd ładowania

Maksymalna ilość prądu stałego w amperach, którą falownik może przetworzyć. Jeśli panel fotowoltaiczny wytworzy prąd przekraczający tę wartość, falownik po prostu go nie wykorzysta. Często ma to swoje uzasadnienie w przypadku podłączenia falownika do paneli fotowoltaicznych dużej mocy – maksymalny prąd wejściowy falownika zostaje zredukowany do akceptowalnych wartości, dzięki czemu do przesyłania energii można używać przewodów o umiarkowanych rozmiarach.

Maks. moc wejściowa

Maksymalna dopuszczalna moc wejściowa z paneli fotowoltaicznych, wyrażona w kilowatach (kW). Przypomnijmy, że 1 kW to 1000 watów.

Wybierając inwerter na podstawie tego parametru, należy opierać się na całkowitej mocy paneli fotowoltaicznych zaangażowanych w wytwarzanie energii elektrycznej. Co więcej, często warto wybierać modele o mocy wejściowej inwertera nieco mniejszej niż maksymalna moc paneli fotowoltaicznych – na przykład, jeśli są one przez część czasu zacienione lub z innych powodów nie otrzymują wystarczającej ilości światła słonecznego w ciągu dnia. Moc baterii słonecznej nie powinna przekraczać mocy inwertera o więcej niż 30%. Jednak w przypadku niektórych inwerterów nadmiar może wynosić tylko 10%, podczas gdy w przypadku innych urządzeń może sięgać nawet 100%. Tę kwestię najlepiej wyjaśnić przed zakupem.

Kontroler

Wbudowany system Maximum Power Point Tracking do śledzenia punktów maksymalnej mocy modułów fotowoltaicznych paneli słonecznych. Określa najbardziej optymalny stosunek napięcia do prądu z paneli słonecznych, tym samym zapewniając maksymalną wydajność poszczególnych stringów (szeregowo połączonych paneli). MPPT-kontroler okaże się przydatny przy wszelkich zewnętrznych zmianach warunków pogodowych, dzięki czemu generacja z paneli słonecznych będzie możliwa nawet w pochmurną pogodę. Nowoczesne modele inwerterów mogą zawierać zarówno jeden, jak i kilka MPPT-trekkerów (do 6), które pozwalają na podłączenie kilku pól o różnej orientacji i kącie nachylenia, eliminując tym samym wzajemny wpływ jednego pola na drugie. Każde wyjście MPPT-kontrolera przeznaczone jest do podłączenia jednego stringa.

Interfejsy

Interfejsy przyłączeniowe przewidziane w konstrukcji falownika dla paneli fotowoltaicznych.

- RS232. Specjalistyczny interfejs komunikacyjny służący do bezpośredniego połączenia falownika z komputerem. Interfejs z reguły zapewnia możliwość całodobowego monitorowania systemów fotowoltaicznych z wykorzystaniem sieci lokalnej. Złącze RS232 można również wykorzystać do komunikacji kilku falowników ze sobą lub, rzadziej, do aktualizacji oprogramowania lub testów serwisowych.

- RS485. Złącze, często używane do podłączenia kilku falowników do centralnego koncentratora, który z kolei łączy się z komputerem. Takie połączenie może być przydatne do skonfigurowania systemu wytwarzania energii słonecznej lub przesyłania danych monitorowania przez sieć.

-USB. Standardowy port USB jest często używany do konfiguracji sprzętu poprzez przewodowe połączenie z komputerem lub do aktualizacji oprogramowania sprzętowego falownika.

- LAN (RJ45). Obecność złącza LAN (RJ45) w konstrukcji falownika. Porty te są powszechnie używane do połączeń przewodowych w sieciach komputerowych za pomocą skrętki komputerowej.

- Wi-Fi. Moduł komunikacyjny Wi-Fi umożliwiający bezprzewodowe połączenie falownika z komputerem, laptopem lub telefonem komórkowym. Dzięki specjalistycznemu oprogramow...aniu możesz odbierać dane z monitoringu z falownika bezpośrednio „bezprzewodowo” – przesyłanie informacji poprzez sieć Wi-Fi eliminuje konieczność stosowania przewodów.

Bluetooth. Możliwość bezprzewodowego sparowania falownika ze smartfonami, tabletami lub laptopami poprzez Bluetooth. Dzięki synchronizacji danych użytkownik będzie mógł monitorować pracę sprzętu i zdalnie sterować falownikiem w zasięgu sieci bezprzewodowej Bluetooth.

Zabezpieczenie

Zabezpieczenie przed przeciążeniem. Układ zabezpieczający przed podłączeniem obciążenia nietypowego, którego pobór mocy przekracza możliwości falownika do paneli fotowoltaicznych. W takich sytuacjach zasilanie gniazd jest automatycznie wyłączane, ponieważ przeciążenie urządzenia grozi awarią, a nawet pożarem. Zadziałaniu zabezpieczenia towarzyszy zwykle sygnał dźwiękowy i/lub świetlny.

Zabezpieczenie przed przegrzaniem. Zabezpieczenie to włącza się, gdy temperatura wewnątrz falownika krytycznie wzrasta. Gdy wystąpią takie sytuacje, urządzenie wyłącza się, co pozwala uniknąć awarii. W przyszłości niektóre modele będą włączać się automatycznie po normalizacji temperatury, inne będą musiały być włączane ręcznie. Należy pamiętać, że przegrzanie jest spowodowane nie tylko awarią, ale także całkowicie normalnymi przyczynami - na przykład długotrwałą pracą przy wysokich temperaturach powietrza. Zazwyczaj zabezpieczeniu przed przegrzaniem towarzyszy sygnał dźwiękowy i/lub świetlny.

Ochrona przed ↑ lub ↓ napięciem akumulatora. Układ zabezpieczający, który zapobiega zasilaniu falownika zbyt wysokim lub zbyt niskim napięciem z akumulatorów. Po przekroczeniu zakresu napięcia roboczego urządzenie automatycznie się wyłącza, aby uniknąć awarii i innych problemów. Sygnał dźwiękowy i/lub świetlny może ostrzec o włączeniu zabezpieczenia.

Zabezpieczenie przed zwarciem. Zabezpieczenie uruchamiane w przypadku krytycznego wzrostu prądu wyjściowego (na przykład z powodu przedostania się obcego metalowego przedmiotu pomiędzy części obciążenia pod napięciem). Aby uniknąć awarii i awarii, zasilanie na wyjściu falownika jest automatycznie wyłączane. Uruchomieniu układu zabezpieczającego towarzyszy zwykle sygnał dźwiękowy i/lub świetlny.

Zabezpieczenie przed odwrotną polaryzacją. System ochrony w przypadku nieprawidłowej polaryzacji podłączenia. Jeżeli „plus” i „minus” nie pasują, falownik zostaje odłączony od zasilania, aby uniknąć uszkodzenia elementów elektronicznych. Powiadomienie o zadziałaniu zabezpieczenia często następuje za pomocą sygnału dźwiękowego i/lub świetlnego.

— Klasa ochrony. Klasa ochrony przed kurzem i wilgocią, jaką zapewnia obudowa falownika do paneli fotowoltaicznych. Oznaczona zgodnie ze standardem IP dwiema liczbami: pierwsza (od 1 do 6) oznacza odporność na wnikanie ciał obcych i kurzu, druga (od 1 do 8) - ochronę przed wilgocią. Im wyższa liczba, tym wyższy poziom zapewnianej ochrony. Należy również pamiętać, że zamiast pierwszej cyfry w oznaczeniu stopnia ochrony można wskazać „X” - na przykład IPX7. W tym przypadku urządzenie nie posiada certyfikatu ochrony przed kurzem, chociaż w rzeczywistości poziom takiej ochrony może być dość wysoki. Tak więc w przykładzie z odpornością na wilgoć „7” obudowę można całkowicie zanurzyć w wodzie - co oznacza, że jest bardzo szczelnie zamknięta przed kurzem.

Stopień ochrony IP jest szczególnie ważny przy wyborze modeli do użytku na zewnątrz oraz montażu w pomieszczeniach o dużej wilgotności – to one są najbardziej podatne na niekorzystne wpływy środowiska. Wysoka klasa IP zagwarantuje stabilną pracę falownika do paneli fotowoltaicznych w tak trudnych warunkach.
Anern EVO Series SCI-EVO-10200 często porównują
Anern EVO Series SCI-EVO-6200 często porównują