Ogniskowa
Ogniskowa obiektywu teleskopu.
Ogniskowa to odległość od środka optycznego obiektywu do płaszczyzny, na którą rzutowany jest obraz (ekran, film, matryca), przy której obiektyw teleskopu wytworzy najczystszy obraz. Im dłuższa ogniskowa, tym większe powiększenie może zapewnić teleskop; należy jednak pamiętać, że powiększenie jest również związane z ogniskową używanego okularu i średnicą obiektywu (więcej na ten temat poniżej). Ale to, na co parametr ten bezpośrednio wpływa, to wymiary urządzenia, a dokładniej długość rurki. W przypadku refraktorów i większości reflektorów (patrz „Konstrukcja”) długość teleskopu w przybliżeniu odpowiada jego ogniskowej, ale w modelach z lustrzanym obiektywem może być 3-4 razy krótsza od ogniskowej.
Zauważ też, że ogniskowa jest uwzględniana w niektórych wzorach charakteryzujących jakość teleskopu. Na przykład uważa się, że dla dobrej widoczności przez najprostszy rodzaj teleskopu ogniotrwałego - tzw. achromat - konieczne jest, aby jego ogniskowa była nie mniejsza niż D^2/10 (kwadrat średnicy obiektywu podzielony przez 10), a lepiej - nie mniej niż D^2/9.
Maks. użyteczne powiększenie
Największe użyteczne powiększenie, jakie może zapewnić teleskop.
Rzeczywiste powiększenie teleskopu zależy od ogniskowych obiektywu (patrz wyżej) i okularu. Dzieląc pierwsze przez drugie otrzymujemy powiększenie: np. system z obiektywem 1000 mm i okularem 5 mm da 1000/5 = 200x (w przypadku braku innych elementów wpływających na powiększenie, takich jak Barlow obiektyw - patrz poniżej). Dzięki temu, instalując w teleskopie różne okulary, można zmieniać stopień jego powiększenia. Jednak zwiększanie powiększenia poza pewną granicę po prostu nie ma sensu: choć pozorne rozmiary obiektów wzrosną, to ich szczegółowość nie ulegnie poprawie, a zamiast małego i wyraźnego obrazu obserwator zobaczy duży, ale rozmazany. Maksymalne użyteczne powiększenie to dokładnie granica, powyżej której teleskop po prostu nie może zapewnić normalnej jakości obrazu. Uważa się, że zgodnie z prawami optyki wskaźnik ten nie może być większy niż średnica obiektywu w milimetrach pomnożona przez dwa: na przykład dla modelu z soczewką wejściową 120 mm maksymalne użyteczne powiększenie będzie 120x2 = 240x.
Zwróć uwagę, że praca na tym stopniu powiększenia nie oznacza maksymalnej jakości i wyrazistości obrazu, ale w niektórych przypadkach może być bardzo wygodna; więcej szczegółów patrz „Maks. powiększenie rozdzielczości "
Apertura
Stosunek apertury teleskopu charakteryzuje całkowitą ilość światła „przechwyconego” przez system i przekazanego do oka obserwatora. Pod względem liczb wartość przysłony to stosunek średnicy obiektywu do ogniskowej (patrz wyżej): na przykład w przypadku systemu z przysłoną 100 mm i ogniskową 1000 mm wartość przysłony będzie wynosił 100/1000 = 1/10. Wskaźnik ten jest również nazywany „aperturą względną”.
Przy wyborze według przesłony należy przede wszystkim wziąć pod uwagę cele, do których planowana jest luneta. Duża apertura względna jest bardzo wygodna w astrofotografii, ponieważ przepuszcza dużą ilość światła i umożliwia pracę przy dłuższych czasach otwarcia migawki. Ale do obserwacji wizualnych nie jest wymagany wysoki współczynnik apertury - wręcz przeciwnie, teleskopy o dłuższym ognisku (a tym samym o mniejszej aperturze) charakteryzują się niższym poziomem aberracji i umożliwiają stosowanie wygodniejszych okularów do obserwacji. Zwracamy również uwagę, że duża apertura wymaga zastosowania dużych obiektywów, co odpowiednio wpływa na wielkość, wagę i cenę teleskopu.
Zdolność przenikania
Przepuszczalność teleskopu to wielkość najsłabszych gwiazd, które można przez niego zobaczyć w idealnych warunkach obserwacji (w zenicie, w czystym powietrzu). Wskaźnik ten opisuje zdolność teleskopu do widzenia małych i słabo świecących obiektów astronomicznych.
Oceniając możliwości teleskopu dla tego wskaźnika, należy pamiętać, że im jaśniejszy obiekt, tym mniejsza jego jasność: na przykład dla Syriusza, najjaśniejszej gwiazdy na nocnym niebie, wskaźnik ten wynosi -1, a dla wielu ciemniejsza Gwiazda Polarna - około 2. Największa jasność widoczna gołym okiem to około 6,5.
Zatem im większa liczba w tej charakterystyce, tym lepiej teleskop nadaje się do pracy ze słabymi obiektami. Najskromniejsze nowoczesne modele są w stanie zobaczyć gwiazdy tak małe jak 10, a najbardziej zaawansowane systemy konsumenckie są w stanie widzieć ponad 15 – prawie 4000 razy słabsze niż minimum dla gołego oka.
Zauważ, że rzeczywista przepuszczalność jest bezpośrednio związana ze współczynnikiem powiększenia. Uważa się, że teleskopy osiągają maksimum dla tego wskaźnika, gdy używa się okularów zapewniających powiększenie rzędu 0,7D (gdzie D to średnica obiektywu w milimetrach).
Szukacz
Typ szukacza dołączonego do teleskopu.
Poszukiwacz to urządzenie zaprojektowane do wycelowania urządzenia w określony obiekt niebieski. Potrzeba takiego urządzenia wynika z faktu, że lunety, ze względu na duże powiększenie, mają bardzo małe kąty widzenia, co znacznie komplikuje prowadzenie wzrokowe: tak mały obszar nieba jest widoczny w okularze, że można go Określone na podstawie tych danych dokładnie, gdzie skierowany jest teleskop i gdzie jest potrzebny, obracanie jest prawie niemożliwe. Prowadzenie „wzdłuż tuby” jest bardzo niedokładne, szczególnie w przypadku modeli lustrzanych o dużej grubości i stosunkowo krótkiej długości. Szukacz natomiast ma małe powiększenie (lub działa w ogóle bez powiększenia) i odpowiednio szerokie kąty widzenia, pełniąc tym samym rolę swoistego „celownika” dla głównego układu optycznego teleskopu.
We współczesnych teleskopach można zastosować następujące typy szukaczy:
-
Optyczne. Najczęściej szukacze te mają postać małego monokularu skierowanego równolegle do osi optycznej teleskopu. W polu widzenia monokularu stosuje się zwykle oznaczenia, które pokazują, który punkt w widzialnej przestrzeni odpowiada polu widzenia samego teleskopu. W większości przypadków celowniki optyczne zapewniają również pewne powiększenie - zwykle rzędu 5 - 8x, dlatego przy pracy z takimi układami z reguły nadal wymagane jest wstępne skierowanie lunety "wzdłuż tuby". Zaletami optyki w porównaniu z szukacza
...mi LED są prostota konstrukcji, niski koszt, a także dobra przydatność do obserwacji w mieście, na przedmieściach i innych warunkach przy dość jasnym niebie. Ponadto takie urządzenia są niezależne od źródeł zasilania. Na tle ciemnego nieba oznaczenia mogą być słabo widoczne, ale w takich przypadkach istnieje specyficzny rodzaj szukaczy - z podświetlanym celownikiem. Co prawda podświetlenie wymaga baterii, ale nawet przy ich braku oznaczenia pozostają widoczne - jak w konwencjonalnym, niepodświetlanym szukaczu. Nasadki tego typu są oznaczone tradycyjnym dla optyki indeksem dwóch liczb, z których pierwsza odpowiada krotności, druga średnicy obiektywu - np. 5x24.
- Z prowadzeniem punktowym (LED). Celowniki tego typu są w zasadzie podobne do celowników kolimatorowych: niezbędnym elementem konstrukcyjnym jest okienko obserwacyjne (w postaci charakterystycznego szkła w ramie), na które rzutowany jest znacznik ze źródła światła. Ten znak może mieć formę punktu lub innego kształtu - krzyża, pierścienia z kropką itp. Urządzenie takiego szukacza jest takie, że położenie znaku w oknie zależy od położenia oka obserwatora, ale ten znak zawsze wskazuje punkt, w który skierowany jest teleskop. Celowniki LED są wygodniejsze od celowników optycznych w tym sensie, że użytkownik nie musi zbliżać oczu do okularu - znak jest dobrze widoczny z odległości 20-30 cm, co ułatwia celowanie w niektórych sytuacjach ( na przykład, jeśli obserwowany obiekt znajduje się blisko zenitu). Świetnie sprawdzają się również na ciemnym niebie. Zwykle nie mają powiększenia, ale nie można tego nazwać jednoznaczną wadą – dla poszukiwacza często ważniejsze od przybliżenia jest szerokie pole widzenia. Ale jedną z jednoznacznych praktycznych mankamentów jest konieczność posiadania źródła zasilania (najczęściej baterii) – bez nich system zamienia się w bezużyteczny kawałek szkła. Ponadto kolimatory na ogół są znacznie droższe od klasycznej optyki, a na tle rozświetlonego nieba znak może się zgubić.
Zwróć uwagę, że istnieją teleskopy, które w ogóle nie mają szukaczy – są to modele o małej średnicy obiektywu, w których minimalne powiększenie (patrz wyżej) jest niewielkie i zapewnia dość szerokie pole widzenia.Okulary
W tym punkcie wyszczególniono okulary znajdujące się w standardowym zakresie dostawy teleskopu, a dokładniej ogniskowe tych okularów.
Mając te dane i znając ogniskową teleskopu (patrz wyżej), można określić powiększenia, jakie urządzenie może dać po wyjęciu z pudełka. W przypadku teleskopu bez soczewek Barlowa (patrz niżej) i innych dodatkowych elementów o podobnym przeznaczeniu, powiększenie będzie równe ogniskowej obiektywu podzielonej przez ogniskową okularu. Na przykład optyka 1000 mm wyposażona w „oczy” 5 i 10 mm będzie w stanie uzyskać powiększenia 1000/5=200x i 1000/10=100x.
W przypadku braku odpowiedniego okularu w zestawie, można go zazwyczaj dokupić osobno.
Mocowanie tubusa
Sposób mocowania rurki do montażu dostarczonego w lunecie.
Obecnie stosuje się trzy główne takie metody:
pierścienie,
śruby,
płyty. Oto bardziej szczegółowy opis każdego z nich:
- Pierścienie mocujące. Para pierścieni zaciskanych śrubami montowanych na drążku do podważania. Wewnętrzna średnica pierścieni odpowiada w przybliżeniu grubości rury, a dokręcenie śrub zapewnia ciasne dopasowanie. W tym przypadku tubus teleskopu z reguły nie posiada żadnych specjalnych ograniczników i jest utrzymywany w pierścieniach wyłącznie siłą tarcia. W praktyce pozwala to, poprzez poluzowanie śrub, przesunąć rurę do przodu lub do tyłu, wybierając optymalną pozycję do konkretnej sytuacji. Trzeba tu jednak uważać: zbyt duże przemieszczenie mocowania od środka, szczególnie w refraktorach o dużej długości tubusu, może zaburzyć równowagę całej konstrukcji.
Tak czy inaczej, pierścienie są dość proste, a jednocześnie wygodne i praktyczne, a kompatybilność z nimi jest ograniczona wyłącznie średnicą rurki. W związku z tym ten konkretny rodzaj zapięcia jest obecnie najbardziej popularny. Do jego wad należy konieczność samodzielnego dobrania odpowiednio stabilnej pozycji lunety, a także dopilnowania, aby śruby były dobrze dokręcone – ich odkręcanie może doprowadzić do zsunięcia się tubusu, a nawet wypadnięcia z pierścieni.
- Płyta montażowa. W rzeczywistości mówimy o mont
...ażu na jaskółczy ogon. W tym celu na korpusie teleskopu przewidziana jest specjalna szyna, a na mocowaniu przewidziana jest platforma z rowkiem. Podczas montażu rury na uchwycie szynę wsuwa się od końca w rowek i mocuje za pomocą specjalnego urządzenia, takiego jak zatrzask lub śruba.
Jedną z kluczowych zalet płyt montażowych jest łatwość i szybkość montażu i demontażu lunety. Tak więc odkręcenie i dokręcenie pojedynczej śruby ustalającej jest łatwiejsze niż majstrowanie przy mocowaniu śrub lub pierścieniach zaciskowych - zwłaszcza, że w wielu modelach śrubę tę można skręcić ręcznie, bez specjalnego narzędzia. I nie ma co mówić o zatrzaskach. Wadę tej opcji można nazwać dokładnością jakości materiałów i dokładnością wykonania – w przeciwnym razie może pojawić się luz, który może znacząco „zrujnować życie” astronoma. Dodatkowo taki montaż ma bardzo ograniczone możliwości przesuwania teleskopu tam iz powrotem na montażu, a nawet ich nie posiada; a paski i rowki mogą różnić się kształtem i rozmiarem, co nieco utrudnia wybór mocowań innych firm.
- Śruby mocujące. Montaże z takim montażem posiadają gniazdo w kształcie litery Y, pomiędzy „rogami” których montuje się lunetę. Jednocześnie jest przymocowany do rogów z obu stron za pomocą śrub wkręcanych bezpośrednio w rurę; śruby są przewidziane dla co najmniej dwóch z każdej strony, aby rura nie mogła obracać się niezależnie wokół punktu mocowania.
Ogólnie rzecz biorąc, ta opcja mocowania jest wysoce niezawodna i wygodna w procesie użytkowania teleskopu. Śruby mocno trzymają rurę, bez luzów; kiedy są osłabione, może pojawić się ten sam luz, ale to wszystko; dodatkowo teleskop pozostanie na montażu i nie spadnie, jeśli chociaż jedna śruba pozostanie przynajmniej częściowo dokręcona. Dodatkowo punkt wpinania zazwyczaj znajduje się w obszarze środka ciężkości, co domyślnie zapewnia optymalne wyważenie i eliminuje konieczność samodzielnego odnalezienia przez użytkownika punktu wpięcia. Z drugiej strony instalowanie i usuwanie rury w tych mocowaniach jest bardziej czasochłonne i kłopotliwe niż w systemach opisanych powyżej; Rozmieszczenie otworów na śruby i gwinty montażowe zwykle różnią się w zależności od modelu, a tego typu konstrukcja zwykle nie jest wymienna.