Napięcie wejściowe
Napięcie wejściowe, dla którego zaprojektowano UPS. Parametr ten również prawie określa rodzaj sieci - różne napięcia odpowiadają różnej liczbie faz:
-
1 faza (230 V). Podłączenie ze zwykłymi sieciami domowymi o napięciu 230 V. Z tych sieci korzysta większość urządzeń zasilanych z zasilaczy awaryjnych: komputery, sprzęt wideo i audio, kotły gazowe, klimatyzatory, sprzęt medyczny itp. Dlatego przeważająca większość nowoczesnych zasilaczy UPS jest zaprojektowanych specjalnie na napięcie 230 V. Jednocześnie modele o stosunkowo małej mocy mogą pracować bezpośrednio z gniazdka, lecz w przypadku urządzeń o wysokiej maksymalnej mocy wyjściowej - od 3,5 kVA - może być wymagany specjalny format podłączenia (bezpośrednio do rozdzielnicy).
-
3 fazy (400 V). Podłączenie do sieci trójfazowych 400 V. Takie sieci służą do zasilania potężnych urządzeń przemysłowych, a także do dostarczania energii z podstacji na całe segmenty sieci elektrycznej (na przykład cały budynek). W związku z tym, w przypadku zasilacza UPS sensowne jest stosowanie takiego napięcia wejściowego tylko w najmocniejszych modelach zaprojektowanych do dużych obciążeń - na przykład całe centrum danych lub warsztat przemysłowy o wysokich wymaganiach dotyczących ciągłości procesu. Moc skuteczna takich zasilaczy awaryjnych wynosi od 4 kW, a napięcie wyjściowe (patrz poniżej) może być jedno- lub trójfazowe.
- 1 faza (230 V)/3
...fazy (400 V). Urządzenia bezprzerwowe, które umożliwiają podłączenie do dowolnego z typów sieci opisanych powyżej. Większość z tych urządzeń to w rzeczywistości modele na trzy fazy, uzupełnione o możliwość pracy od 230 V. Należy pamiętać, że do pracy z sieci jednofazowej takie modele zwykle wymagają bezpośredniego podłączenia do rozdzielnicy, a moc wyjściowa przy takim połączeniu może być niższa od deklarowanego maksimum (ten wątek nie zaszkodzi wyjaśnić osobno).Całkowita pojemność baterii
Pojemność baterii zainstalowanej w UPS. W przypadku modeli z kilkoma akumulatorami jest to zarówno całkowita pojemność użyteczna, jak i pojemność każdego pojedynczego akumulatora: akumulatory w takich urządzeniach są zwykle połączone szeregowo, tak aby ich łączna pojemność odpowiadała pojemności każdego pojedynczego ogniwa.
W teorii większa pojemność baterii oznacza możliwość dłuższego zasilania obciążenia o określonej mocy. Jednak w praktyce parametr ten ma raczej charakter referencyjny niż praktyczny. Faktem jest, że rzeczywista ilość energii zgromadzonej przez baterię zależy nie tylko od pojemności w amperogodzinach, lecz także od napięcia w woltach; napięcie to często nie jest określone w charakterystyce, a jego znajomość jest niezbędna do dokładnych obliczeń. Dlatego przy wyborze należy skupić się na bardziej realistycznych cechach – przede wszystkim na deklarowanym bezpośrednio czasie pracy w różnych trybach (patrz wyżej).
Czas pełnego naładowania
Czas potrzebny do pełnego naładowania baterii UPS. Należy pamiętać, że w danym przypadku czas ten jest liczony według specjalnych zasad: nie od 0 do 100%, lecz od stanu, w którym nie można podtrzymywać połowicznego obciążenia, do 90% ładunku. Oczywiście pełne naładowanie zajmie trochę więcej czasu. Jednak te dane są bliższe praktyce niż liczenie „od 0 do 100%”: brak możliwości pracy z połowicznym obciążeniem sprawia, że UPS jest prawie bezużyteczne, a stan ten można przyjąć jako zero, a 90% akumulatora jest już w stanie zapewnić gwarancję w przypadku awarii zasilania.
Zimny start
Możliwość włączenia zasilacza awaryjnego w trybie „zimny start”.
Zimny start nazywany jest trybem włączania, w którym nie ma zewnętrznego źródła zasilania, a obciążenie podłączone do UPS jest zasilane natychmiast z baterii zasilacza (którą oczywiście należy naładować). Ten tryb jest szczególnie przydatny w sytuacjach awaryjnych – na przykład, gdy potrzebujesz pilnie wydrukować dokument, ale nie ma światła.