Rodzaj matrycy
Technologia, w której wykonana jest matryca monitora.
—
TN+film. Najstarsza i najbardziej rozpowszechniona technologia produkowania matryc. Oryginalne monitory TN (Twisted Nematic) mają szybki czas reakcji i niski koszt, ale jakość obrazu jest przeciętna. Na przykład jakość odwzorowania barw jest niska, a idealna czerń jest generalnie niemożliwa do odtworzenia. Ponadto oryginalna technologia
TN zapewnia stosunkowo małe kąty widzenia. Aby poprawić tę sytuację, na powierzchnię matrycy nakłada się specjalną folię. Te matryce nazwano „TN+film”. Monitory z taką matrycą są rozpowszechnione i niedrogie. Idealnie nadają się do wykorzystania przez niewymagających użytkowników zarówno w domu, jak i w biurze, a gracze docenią szybki czas reakcji.
—
*VA (Vertical Aligment, opcje: MVA, PVA, Super MVA, Super PVA). Swego rodzaju przejściowa opcja między drogą i wysokiej jakości
IPS a budżetową TN. Zapewniają dość wysokiej jakości odwzorowanie barw, w tym czerni, kąty widzenia sięgają 178°. Główną wadą matryc VA jest znaczny czas reakcji (szczególnie w przypadku
monitorów MVA), przez co takie monitory stosunkowo słabo nadają się do oglądania filmów i szybkich gier. Ta wada jest stopniowo eliminowana, a najnowsze monitory VA zbliżają się do TN+film pod względem czasu reakcji.
— IPS. Początkowo techn
...ologia IPS została stworzona z myślą o monitorach wysokiej klasy (w szczególności „designerskich”), dla których kluczowymi parametrami była jakość odwzorowania barw oraz szeroka przestrzeń barw. Przy tych wszystkich zaletach oryginalne matryce IPS miały szereg poważnych wad - przede wszystkim niską szybkość reakcji i imponujący koszt. W związku z tym opracowano wiele modyfikacji technologii IPS, mających w pewnym stopniu skompensować te wady.
— OLED. Monitory z ekranami wykorzystującymi organiczne diody elektroluminescencyjne - OLED. Takie diody LED można wykorzystywać zarówno do podświetlenia tradycyjnej matrycy, jak i jako elementy, z których zbudowany jest ekran. W pierwszym przypadku przewagami OLED nad tradycyjnym podświetleniem LED są kompaktowość, wyjątkowo niski pobór mocy, równomierność podświetlenia, a także doskonała jasność i kontrast. A w matrycach w całości składających się z OLED te zalety są jeszcze wyraźniejsze. Głównymi wadami monitorów OLED są: wysoka cena (która jednak stale spada wraz z rozwojem i udoskonalaniem technologii), a także podatność pikseli organicznych na wypalanie się przy transmisji statycznych obrazów przez długi czas lub obrazów ze statycznymi elementami (pasek powiadomień, zegar itp.).
— QLED. Monitory zbudowane w technologii kropek kwantowych (QLED). Ta technologia może być stosowana w różnych rodzajach matryc. Polega ona na zastąpieniu zestawu kilku filtrów barwnych stosowanych w klasycznych matrycach specjalną cienkowarstwową powłoką opartą na nanocząsteczkach, a tradycyjnych białych diod LED na niebieskie. Pozwala to na uzyskanie wyższej jasności, nasycenia kolorów i jakości odwzorowania barw przy jednoczesnym zmniejszeniu grubości i zużycia energii. Ponadto QLED dobrze nadaje się do zakrzywionych ekranów. Minusem tych zalet jest wysoki koszt.
— QD-OLED. Rodzaj hybrydowych matryc, łączących w sobie „kropki kwantowe” (Quantum Dot) i organiczne diody elektroluminescencyjne (OLED). Technologia czerpie najlepsze rozwiązania z QLED i OLED: opiera się na niebieskich diodach LED, samoświecących pikselach (zamiast zewnętrznego podświetlenia) i „kropkach kwantowych”, które pełnią rolę filtrów barwnych, ale jednocześnie prawie nie osłabiają światło (w odróżnieniu od tradycyjnych filtrów). Dzięki zastosowaniu szeregu zaawansowanych rozwiązań twórcom udało się uzyskać bardzo imponujące parametry, znacząco przewyższające wiele innych matryc OLED. Należą do nich wysoka jasność szczytowa od 1000 nitów (cd/m²), doskonały kontrast i głębia czerni, a także rozszerzona przestrzeń barw (ponad 120% gamy DCI P3). Takie matryce spotyka się głównie w drogich, zaawansowanych monitorach o dużej przekątnej ekranu.
— AHVA. Rodzaj matrycy stworzony przez AU Optronics (joint venture pomiędzy Acer i BenQ) jako rozwiązanie podobne do współczesnego IPS. Wśród kluczowych zalet tej opcji w porównaniu z analogami jest prawie całkowity brak zniekształceń kolorów pod każdym kątem widzenia.
— PLS (Plane to Line Switching). Ten rodzaj matrycy został opracowany przez inżynierów Samsunga. Opiera się na znanej technologii IPS. Pod pewnymi względami, a mianowicie: jasność i kontrast PLS przekracza IPS o 10%. Głównym celem stworzenia nowego typu ekranów było obniżenie kosztu matrycy, zdaniem dewelopera koszt produkcji został obniżony o 15%, co wpłynie pozytywnie na ostateczną cenę monitorów w porównaniu z odpowiednikami IPS.
— IGZO. Technologia wprowadzona przez firmę Sharp w 2012 roku. Kluczową różnicą pomiędzy matrycami IGZO a klasycznymi matrycami LCD jest to, że w warstwie aktywnej (odpowiedzialnej za tworzenie obrazu) zastosowano nie krzem amorficzny, a materiał półprzewodnikowy na bazie tlenku indu, galu i cynku. Umożliwia to tworzenie ekranów o niezwykle krótkim czasie reakcji i dużej gęstości pikseli, a ta technologia jest uważana za dobrze dopasowaną do ekranów o ultrawysokiej rozdzielczości. Przy tym wszystkim cechy odwzorowania barw pozwalają na stosowanie monitorów IGZO nawet w profesjonalnym polu, a pobór mocy jest bardzo niski. Główną wadą tej odmiany jest jej wysoki koszt.
- UV2A. Technologia LCD opracowana przez firmę Sharp i wprowadzona w 2009 roku. Jedną z kluczowych cech matryc UV2A jest to, że są zbudowane na ciekłych kryształach wrażliwych na światło ultrafioletowe. I to właśnie promieniowanie UV jest wykorzystywane jako sygnał sterujący – zapewnia to, że kryształy obracają się we właściwym kierunku, tworząc obraz. Techniczne cechy takich układów są takie, że położenie poszczególnych kryształów można regulować z niezwykle dużą dokładnością – nawet do kilku pikometrów (przy wielkości samych kryształów około 2 nm). Według producenta zapewnia to dwie kluczowe korzyści: brak „wycieku” podświetlenia oraz lepszą transmisję światła przy „otwartych” kryształach. Pierwsza pozwala osiągnąć bardzo głęboką i bogatą czerń, druga zapewnia doskonałą jasność przy niskim zużyciu energii, a w połączeniu te dwie cechy umożliwiają tworzenie ekranów o bardzo wysokim współczynniku kontrastu statycznego - aż 5000:1. Jednocześnie zwracamy uwagę, że rzeczywiste cechy kontrastu w monitorach UV2A mogą być zauważalnie skromniejsze – wszystko zależy od specyfikacji konkretnej matrycy oraz cech, które producent był w stanie lub uznał za konieczne zapewnić.
- Mini LED IPS. Odmiana znanej matrycy IPS, która jest oświetlona szeregiem diod LED o zmniejszonych rozmiarach. Mały kaliber poszczególnych źródeł światła (około 100-200 mikronów) pozwala na formowanie znacznie większej liczby stref kontrolowanego lokalnego ściemniania ekranu. Razem zapewnia to lepszą jasność, kontrast, nasycenie kolorów i głębię czerni oraz podnosi poprzeczkę dla technologii HDR.
- Mini LED VA. Odmiana matryc VA z systemem podświetlenia Mini LED. Składa się z mnóstwa maleńkich diod LED, które ze względu na swoją liczbę tworzą wielokrotnie więcej lokalnych stref przyciemniania ekranu niż standardowe płótna. W rezultacie panele VA z podświetleniem Mini LED mogą pochwalić się lepszym odwzorowaniem kolorów, imponującą głębią czerni i znacznie poprawioną wydajnością treści HDR.
- Mini LED QLED. Za płaszczyzną paneli QLED w monitorach z systemem podświetlenia Mini LED kryją się tysiące miniaturowych diod LED nie większych niż 200 mikronów, które dzielą ekran na bardzo wiele stref z kontrolowanym, lokalnym ściemnianiem. Można je indywidualnie przyciemniać w celu pełnego wyświetlania treści HDR z jasnym światłem i głęboką czernią.Czas odpowiedzi (MPRT)
Parametr wyraża, jak długo obiekt poruszający się w kadrze jest wyświetlany na ekranie, aż do całkowitego zniknięcia. Im niższy wskaźnik ten, tym bardziej realistycznie wyglądają na monitorze sceny dynamiczne. Reakcja matrycy na ruchy wyraźnie pokazuje czas istnienia śladu ze zmieniającego się obrazu. Parametr MPRT jest bardziej związany z częstotliwością odświeżania ekranu monitora niż z czasem odpowiedzi pikseli. Aby zmniejszyć jego wartość, często wykorzystywana jest funkcja Motion Blur Reduction (MBR), która na krótko wyłącza podświetlenie pod koniec dynamicznych kadrów w celu zwiększenia szczegółowości dynamicznych scen.
Kontrast dynamiczny
Dynamiczny kontrast zapewniany przez ekran monitora.
Dynamiczny kontrast to różnica między najjaśniejszą bielą przy maksymalnej jasności podświetlenia a najgłębszą czernią przy minimalnej. W ten sposób wskaźnik ten różni się od statycznego kontrastu, który jest wskazywany przy stałym poziomie podświetlenia (patrz powyżej). Dynamiczny kontrast można wyrazić bardzo imponującymi liczbami (w niektórych modelach ponad 100000000:1). Jednak w praktyce liczby te są słabo skorelowane z tym, co widzi widz: prawie niemożliwe jest osiągnięcie takiej różnicy w ramach jednej klatki. Dlatego kontrast dynamiczny jest częściej reklamą niż praktycznie istotnym wskaźnikiem, często jest wskazany właśnie w nadziei, że zrobi wrażenie na niedoświadczonym nabywcy. Jednocześnie zauważamy, że istnieją technologie inteligentnego podświetlenia, które pozwalają zmienić jego jasność w określonych obszarach ekranu i uzyskać wyższy kontrast w jednej klatce niż deklarowany statyczny; technologie te można znaleźć głównie w monitorach klasy premium.
Przestrzeń barw (sRGB)
Przestrzeń barw monitora według modelu kolorów sRGB.
Każdą przestrzeń barw podaje się w procentach, ale nie w odniesieniu do całej gamy widocznych kolorów, ale w odniesieniu do warunkowej przestrzeni barw (modelu kolorów). Wynika to z faktu, że żaden współczesny ekran nie jest w stanie wyświetlić wszystkich kolorów widocznych dla ludzi. Niemniej jednak im większa przestrzeń barw, tym szersze możliwości monitora, tym lepsze odwzorowanie barw.
Obecnie sRGB jest de facto standardowym modelem kolorów dla sprzętu komputerowego; jest używany przy projektowaniu i produkcji większości kart graficznych. W przypadku telewizji stosowany jest standard Rec. o podobnych parametrach. Jednocześnie modele te są identyczne w gamie kolorystycznej, a procent pokrycia według nich okazuje się taki sam. W najbardziej zaawansowanych monitorach może
osiągnąć, a nawet przekroczyć 100%; to właśnie te wartości są uważane za niezbędne w przypadku ekranów z najwyższej półki, m.in. profesjonalnych.
Przestrzeń barw (Adobe RGB)
Przestrzeń barw monitora według modelu kolorów Adobe RGB.
Dowolna przestrzeń barw jest wskazywana w procentach, ale nie w odniesieniu do całej gamy widocznych kolorów, ale w odniesieniu do warunkowej przestrzeni barw (modelu kolorów). Wynika to z faktu, że żaden współczesny ekran nie jest w stanie wyświetlić wszystkich kolorów widocznych dla ludzi. Niemniej jednak im większa przestrzeń barw, tym szersze możliwości monitora, tym lepsze odwzorowanie barw.
W szczególności model kolorów Adobe RGB został pierwotnie opracowany do użytku w druku; zakres kolorów, które obejmuje, odpowiada możliwościom profesjonalnego sprzętu poligraficznego. W związku z tym wsparcie dla tego modelu i szeroka przestrzeń barw zgodnie z nim są ważne przede wszystkim, jeśli monitor jest używany do projektowania i układu wysokiej jakości produktów drukowanych. W najbardziej zaawansowanych ekranach wskaźnik ten może wynosić
99% lub więcej. Jednocześnie zauważamy, że Adobe RGB jest szerszy niż popularny sRGB, a wartości procentowe dla tego modelu są mniejsze: na przykład 99% dla RGB często daje tylko około 87% dla Adobe RGB.
Moc ładowania
Moc, która może przejść przez złącze USB C z technologią szybkiego ładowania Power Delivery. W związku z tym od tej wartości zależy zdolność zasilania podłączonych urządzeń, w szczególności laptopów, które potrzebują co najmniej 60 W. Dlatego, aby używać USB C nie tylko do transmisji wideo, ale także do zasilania podłączonego gadżetu, upewnij się, że możesz dostarczyć niezbędne zasilanie. Ważną kwestią jest to, że nie wszystkie monitory mogą jednocześnie przesyłać obraz i zasilanie o maksymalnej mocy, dlatego ten punkt wskazuje maksymalną wartość mocy tylko w trybie zasilania.
Funkcje i możliwości
hub USB 2.0
Hub USB 2.0 to zestaw dodatkowych portów USB w obudowie monitora, do których można podłączać różne urządzenia peryferyjne (pod warunkiem, że monitor jest podłączony do portu USB komputera za pomocą specjalnego kabla). Ten sprzęt służy dwóm przydatnym celom. Po pierwsze, hub zwiększa liczbę portów dostępnych do połączenia. Po drugie, te złącza znajdują się blisko użytkownika, dosłownie na wyciągnięcie ręki. Należy jednak mieć na uwadze, że rozgałęźniki słabo nadają się do podłączania urządzeń wymagających dużej mocy przez USB (np. zewnętrzne dyski twarde bez osobnego zasilacza). Wynika to z tego, że zasilanie z portu komputera jest „dzielone” przez rozgałęźnik po równo na wszystkie podłączone urządzenia, a przy obciążonym hubie moc w pewnym momencie może nie wystarczyć.
Należy również zauważyć, że standard 2.0 charakteryzuje się przepustowością 480 Mb/s i od dawna jest uważany za przestarzały, ale monitory z tym interfejsem są nadal produkowane.
Podświetlenie RGB
Obecność zewnętrznego podświetlenie RGB w monitorze.
Podświetlenie to ma postać diod LED lub pasków LED osadzonych w ramie i/lub panelu tylnym. Pełni głównie funkcję dekoracyjną - nadaje monitorowi ciekawy wygląd, co szczególnie doceniają gracze i miłośnicy moddingu. Skrót RGB oznacza, że podświetlenie może zmieniać kolor; co więcej, sprawa zwykle nie ogranicza się do trzech podstawowych kolorów (red-green-blue - czerwony-zielony-niebieski), oświetlenie może przybierać niemal każdy odcień. W niektórych modelach jest nawet w stanie automatycznie dopasować się do obrazu na ekranie, dzięki czemu podświetlenie widoczne dla użytkownika poprawia ogólne wrażenie obrazu. Istnieją również systemy podświetlenie, które można zsynchronizować z innymi komponentami systemu (więcej szczegółów poniżej).