Pojemność
Nominalna pojemność dysku. Specyfikacja ta bezpośrednio określa nie tylko ilość danych, które mogą zmieścić się na urządzeniu, ale także jego koszt; wiele modeli dysków SSD jest nawet dostępnych w kilku wersjach o różnych pojemnościach. Dlatego przy wyborze należy wziąć pod uwagę rzeczywiste potrzeby i osobliwości zastosowania - w przeciwnym razie możesz przepłacić znaczną kwotę za pojemność, która w praktyce nie jest potrzebna.
Jeśli chodzi o rzeczywiste wartości, pojemność do 120 GB jest w naszych czasach uważana za niewielką. Wskaźniki od
120 GB do
240 GB można nazwać średnimi, od
500 GB do
1 TB (w zakresie, w jakim mieszczą się
dyski SSD o pojemności 400 i
800 GB ) - solidne, a najbardziej pojemne współczesne dyski SSD mogą pomieścić
2 TB lub
nawet więcej .
Interfejs M.2
Interfejs połączeniowy obsługiwany przez dysk M.2 (patrz współczynnik kształtu).
Wszystkie takie dyski używają standardowego złącza sprzętowego, jednak przez to złącze można zaimplementować różne interfejsy elektryczne (logiczne) - SATA (zwykle
SATA 3 ) lub PCI-E (najczęściej w
PCI-E 3.0 2x,
PCI-E 3.0 4x,
PCI-E 4.0 4x,
PCI-E 5.0 4x). Gniazdo M.2 na płycie głównej musi obsługiwać odpowiedni interfejs, w przeciwnym razie dysk SSD nie będzie działał normalnie. Rozważmy bardziej szczegółowo każdą opcję.
Łączność SATA 3 zapewnia szybkość przesyłania danych do 5,9 Gb/s (około 600 MB/s); jest uważana za bardzo prostą opcję i jest używana głównie w niedrogich modułach M.2. Wynika to z faktu, że ten interfejs został pierwotnie stworzony dla dysków twardych, a dla szybszych dysków SSD jego możliwości mogą już nie wystarczyć.
Z kolei interfejs PCI-E zapewnia większą prędkość połączenia i umożliwia implementację specjalnych technologii, takich jak NVMe (patrz poniżej). Oznaczenie takiego interfejsu wskazuje na jego wersję i liczbę linii - na przykład PCI-E 3.0 2x oznacza wersję 3 z dwoma liniami danych. Dzięki temu oznaczeniu możesz określić maksymalną prędkość połączenia: PCI-E wersja 3.0 daje nieco mniej niż 1 GB/s na linię, wersja 4.0 — dwa razy (do 2 Gb/s) 5.0 — jeszcze 2 razy więcej wzg
...lędem wersji 4.0 (prawie 4 Gb/s). Dla PCI-E 5.0 4x maksymalna szybkość wymiany danych wyniesie około 15 GB/s (4 linie po 4 GB/s). Jednocześnie zauważamy, że nowsze i szybsze dyski można podłączać do wcześniejszych i wolniejszych złączy M.2 - chyba że szybkość przesyłania danych będzie ograniczona przez możliwości złącza.Zewnętrzna prędkość zapisu
Najwyższa prędkość
zapisu charakteryzuje prędkość, z jaką moduł może odbierać informacje z podłączonego komputera (lub innego urządzenia zewnętrznego). Ta prędkość jest ograniczona zarówno przez interfejs połączenia (patrz „Złącze”), jak i przez funkcje samego urządzenia.
Zewnętrzna prędkość odczytu
Najwyższa prędkość wymiany danych z komputerem (lub innym urządzeniem zewnętrznym), jaki może zapewnić dysk w trybie odczytu; Mówiąc najprościej -
najwyższa prędkość przesyłania informacji z dysku do urządzenia zewnętrznego. Ta prędkość jest ograniczona zarówno przez interfejs połączenia (patrz „Złącze”), jak i przez funkcje samego urządzenia. Jego wartości mogą wahać się od 100 - 500 MB/s w najwolniejszych modelach do ponad 3 GB/s w najbardziej zaawansowanych.
Średni czas bezawaryjnej pracy
Średni czas bezawaryjnej pracy - czas, w którym urządzenie jest w stanie pracować bez przerw bez awarii i usterek; innymi słowy, czas pracy, po którym występuje duże prawdopodobieństwo awarii.
Z reguły charakterystyka ta wskazuje pewien średni czas, wynikający z rezultatów testów umownych. Dlatego rzeczywista wartość tego parametru może różnić się od deklarowanej w tym czy innym kierunku; jednak w praktyce kwestia ta nie jest szczególnie istotna. Faktem jest, że w przypadku nowoczesnych dysków SSD MTBF jest obliczany w milionach godzin, a 1 milion godzin odpowiada ponad 110 latom - i mówimy o czystym czasie działania. Tak więc z praktycznego punktu widzenia trwałość dysku jest często ograniczona przez bardziej szczegółowe parametry - TBW i DPWD (patrz poniżej); a gwarancja producenta nie przekracza kilku lat. Jednak dane dotyczące średniego czasu działania w godzinach mogą się również przydać przy wyborze: jeśli pozostałe parametry są podobne, więcej czasu oznacza większą niezawodność i żywotność dysku SSD jako całości.
TBW
TBW oznacza średni czas dysku między awariami, wyrażony w terabajtach. Innymi słowy, jest to ogólna ilość informacji, które można zapisać (nadpisać) w danym module. Wskaźnik ten pozwala ocenić ogólną niezawodność i żywotność dysku im wyższa wartość TBW, tym dłużej urządzenie będzie działać przy pozostałych warunkach równych.
Należy pamiętać, że znając TBW i okres gwarancji, można obliczyć liczbę dziennych nadpisań (DWPD, patrz odpowiedni punkt), jeśli producent nie określił tych danych. Aby to zrobić, należy użyć wzoru: DWPD = TBW / (V * T * 365), gdzie V to pojemność pamięci w terabajtach, T to okres gwarancji (lata). Jeśli chodzi o konkretne liczby, na rynku dostępnych jest wiele dysków o stosunkowo niskim TBW —
do 100 TB; nawet te wartości są często wystarczające do codziennego użytku przez dłuższy czas. Jednakże modele z TBW na poziomie
100 – 500 TB są bardziej powszechne. Wartości
500 – 1000 TB można zaliczyć do „ponadprzeciętnych”, a w najbardziej niezawodnych rozwiązaniach liczba ta jest
jeszcze wyższa .
Gwarancja producenta
Gwarancja producenta wyznaczona dla tego modelu.
W rzeczywistości jest to minimalna żywotność deklarowana przez producenta, pod warunkiem przestrzegania zasad eksploatacji. Najczęściej faktyczna żywotność urządzenia jest znacznie dłuższa niż gwarantowana. Należy jednak pamiętać, że gwarancja często zapewnia dodatkowe warunki - na przykład „[tyle lat] lub do wyczerpania TBW” (więcej szczegółów na temat TBW, patrz wyżej).
Dokładne warunki gwarancji mogą się różnić nawet w przypadku podobnych dysków tego samego producenta. Najpopularniejsze opcje to
3 lata i
5 lat , ale są też inne liczby - do
10 lat w najdroższych modelach.
TRIM
Obsługa modułu dla polecenia
TRIM.
Cechą działania modułów SSD jest to, że przy kasowaniu danych w trybie normalnym (bez użycia TRIM) zmiany dokonywane są tylko w „spisie zawartości” dysku: określone komórki są oznaczane jako puste i gotowe do zapisania nowych informacji . Jednak stare informacje nie są z nich usuwane, a przy zapisywaniu nowych danych faktycznie trzeba je nadpisywać – to znacznie spowalnia szybkość pracy. Polecenie TRIM ma na celu naprawienie sytuacji: po nadejściu sterownik napędu sprawdza, czy komórki oznaczone jako puste są puste iw razie potrzeby czyści je.
Oczywiście tę funkcję musi wspierać nie tylko dysk, ale i system, jednak możliwość pracy z TRIM jest wbudowana w większość popularnych współczesnych systemów operacyjnych.