Tryb nocny
Polska
Katalog   /   Sprzęt i narzędzia ogrodnicze   /   Urządzenia pomiarowe   /   Multimetry

Porównanie UNI-T UT61B+ vs Mastech MS8264

Dodaj do porównania
UNI-T UT61B+
Mastech MS8264
UNI-T UT61B+Mastech MS8264
Porównaj ceny 2
od 144 zł
Produkt jest niedostępny
TOP sprzedawcy
Przyrządmultimetrmultimetr
Rodzajcyfrowycyfrowy
Rodzaje pomiarów
Wykonywane pomiary
napięcie
prąd
rezystancja
pojemność
temperatura
częstotliwość
współczynnik wypełnienia impulsu
napięcie
prąd
rezystancja
pojemność
temperatura
częstotliwość
 
Specyfikacja
Rodzaj prąduAC / DCAC / DC
Rodzaj napięciastałe / przemiennestałe / przemienne
Napięcie DC min.60 mV200 mV
Napięcie DC max.1000 V1000 V
Dokładność pomiaru (V⁻)0.5 %0.5 %
Napięcie AC min.60 mV2000 mV
Napięcie AC max.1000 V750 V
Prąd DC min.600 μA2000 μA
Prąd DC max.10 А10 А
Prąd AC min.600 μA2000 μA
Prąd AC max.10 А10 А
Rezystancja min.600 Ohm200 Ohm
Rezystancja max.60 MOhm200 MOhm
Maks. wyświetlana wartość59991999
Szerokość bitowa wyświetlacza3 5/63 1/2
Funkcje i możliwości
Funkcje
 
tester diod
pomiar ciągłości obwodu
bezkontaktowe wykrywanie napięcia (NCV)
True RMS
automatyczny wybór zakresu pomiarowego
wyłącznik czasowy
tester tranzystorów
tester diod
pomiar ciągłości obwodu
 
 
 
wyłącznik czasowy
Wyposażenie
akumulatorowe
sondy pomiarowe
kabel do transmisji danych
akumulatorowe
sondy pomiarowe
 
Dane ogólne
Podświetlany wyświetlacz
Port USB
Stopka
Zasilanieakumulatoroweakumulatorowe
Typ akumulatora4xAAA9 V
Wymiary190x90x50 mm195x92x55 mm
Waga350 g380 g
Data dodania do E-Kataloglipiec 2022październik 2016

Wykonywane pomiary

Parametry, które mogą być mierzone przez urządzenie.

- Napięcie. Napięcie (różnica potencjałów między dwoma punktami w obwodzie), mierzone w woltach. Jeden z podstawowych parametrów elektrycznych, obsługiwany przez wszystkie typy przyrządów, z wyjątkiem oscyloskopów (patrz „Urządzenie”). Do pomiaru wykorzystywane jest połączenie równoległe. W urządzeniach analogowych (patrz „Rodzaj”) pomiar napięcia można przeprowadzić bez zasilania.

- Aktualny. Siła prądu przepływającego przez określony odcinek obwodu; mierzone w amperach. Istnieją dwa sposoby pomiaru aktualnej siły: tradycyjny i bezkontaktowy. Pierwszy jest dostępny w prawie wszystkich urządzeniach z funkcją amperomierza, w tym celu konieczne jest otwarcie obwodu i szeregowe przekształcenie urządzenia w szczelinę (ponadto przy analogowej zasadzie działania amperomierz nie potrzebuje zasilania). Druga metoda stosowana jest w cęgach prądowych (patrz "Urządzenie").W większości przypadków modele są w stanie mierzyć prąd stały i przemienny.

- Opór. Odporność określonego elementu na stały prąd elektryczny; mierzone w omach. Należy zauważyć, że w tym przypadku mówimy o tradycyjnych pomiarach, które nie wiążą się z ultrawysokimi rezystancjami charakterystycznymi dla izolacji (w izolacji parametr ten sp...rawdzany jest odrębną metodą, więcej szczegółów poniżej). Pomiary rezystancji wykonuje się w następujący sposób: na sondy urządzenia przykładane jest określone napięcie (niskie, w granicach kilku woltów), po czym są one podawane na miejsce pomiaru - oraz rezystancja badanego odcinka obwodu lub inne obiekt jest obliczany na podstawie prądu płynącego przez utworzony obwód. Dlatego do pracy w trybie omomierza wymagane jest zasilanie - nawet dla instrumentu analogowego.

- Pojemność. Pojemność kondensatora mierzy się w faradach (częściej mikrofaradach i innych jednostkach pochodnych). Sam pomiar odbywa się poprzez doprowadzenie do kondensatora prądu przemiennego. Funkcja ta może być przydatna zarówno do wyjaśnienia pojemności kondensatorów bez oznaczenia (początkowo nieoznaczonych lub z wymazanymi napisami), jak i do sprawdzenia jakości podpisanych części. Na kondensatorach oprócz pojemności nominalnej można wskazać maksymalne odchylenie od nominalnej; jeśli wyniki pomiarów wykraczają poza dopuszczalne odchylenie, lepiej nie używać części. Jeśli odchylenie nie jest wskazane, można założyć, że nie powinno ono przekraczać 10% wartości nominalnej. Na przykład dla części 0,5 μF zakres dopuszczalnych pojemności wyniesie 0,45 - 0,55 μF.

- Temperatura. Pomiar temperatury - zwykle zewnętrznym czujnikiem zdalnym, najczęściej na bagnecie. W elektrotechnice funkcja ta służy do sterowania trybem pracy części wrażliwych na przegrzanie lub które muszą działać w określonym trybie temperaturowym.

- Częstotliwość. Możliwość pomiaru częstotliwości sygnału elektrycznego jest typowa przede wszystkim dla oscyloskopów i skopmetrów, ale można ją również spotkać w innych typach przyrządów - tych samych multimetrach (patrz "Urządzenie"). Z reguły oznacza to możliwość wyświetlania określonych liczb odpowiadających częstotliwości w hercach.

- Cła. Jedną z podstawowych cech jednorodnego sygnału impulsowego jest współczynnik wypełnienia, a mianowicie stosunek jego okresu powtarzania do czasu trwania pojedynczego impulsu. Na przykład, jeśli po każdym impulsie 2 ms następuje przerwa 6 ms, to okres powtarzania sygnału będzie wynosił T = 6 + 2 = 8 ms, a współczynnik wypełnienia wyniesie S = 8/2 = 4. Nie należy mylić cykl pracy z cyklem pracy: Chociaż te możliwości opisują jedną właściwość sygnału, robią to na różne sposoby. Współczynnik wypełnienia jest odwrotnością współczynnika wypełnienia, czyli stosunku długości impulsu do okresu powtarzania (w naszym przykładzie będzie to 2/8 = 25%). Termin ten występuje głównie w źródłach angielskich i tłumaczonych, natomiast w elektrotechnice domowej przyjmuje się termin „cykl pracy”.

- Indukcyjność. Indukcyjność jest głównym parametrem roboczym każdej cewki indukcyjnej. Możliwość zmierzenia tego parametru jest ważna w świetle faktu, że specjaliści i radioamatorzy często samodzielnie wykonują cewki, a określenie charakterystyki części bez specjalnego urządzenia jest niezwykle trudne, jeśli nie niemożliwe. Zasada pomiaru indukcyjności jest podobna do określania pojemności kondensatora (patrz wyżej) - przepuszczania prądu przemiennego przez cewkę i śledzenia jego „odpowiedzi”. Jednak funkcja ta jest znacznie mniej powszechna niż pomiar pojemności.

- Rezystancja izolacji. Rezystancja izolacji przewodów elektrycznych na prąd przemienny. Izolacja z definicji ma wyjątkowo dużą rezystancję, więc tradycyjna metoda pomiaru rezystancji (przy niskim napięciu roboczym, patrz wyżej) nie ma tu zastosowania – prądy byłyby zbyt słabe i niemożliwe byłoby ich dokładne zmierzenie. Dlatego do sprawdzania materiałów izolacyjnych i innych dielektryków nie stosuje się omomierzy, ale specjalnych urządzeń - megaomomierzy (lub multimetrów obsługujących ten tryb). Charakterystyczną cechą megaomomierza jest wysokie napięcie robocze - setki, a nawet tysiące woltów. Na przykład do badania izolacji napięciem roboczym 500 V wymagane jest to samo napięcie megaomomierza, dla materiału 3000 V - urządzenie 1000 V itp., bardziej szczegółowo wymagania dla różnych rodzajów izolacji opisano w źródła specjalne. Aby osiągnąć to napięcie, może być wymagany zewnętrzny moduł wysokonapięciowy, ale wiele multimetrów obsługujących ten rodzaj pomiaru jest w stanie samodzielnie generować krótkotrwałe impulsy wysokiego napięcia z niskonapięciowych źródeł zasilania, takich jak baterie AA lub Krona (patrz " Typ Akumulatora"). Należy pamiętać, że podczas pracy z megaomomierzem należy szczególnie uważnie przestrzegać zasad bezpieczeństwa - ze względu na wysokie napięcie robocze.

- Moc. Moc prądu elektrycznego określają dwa podstawowe parametry - siła prądu i napięcie; z grubsza mówiąc, wolty należy pomnożyć przez ampery, wynikiem będzie moc w watach. Tak więc teoretycznie parametr ten można wyjaśniać bez specjalnej funkcji pomiaru mocy - wystarczy wyjaśniać napięcie i prąd. Jednak niektóre przyrządy pomiarowe mają specjalny tryb, który pozwala natychmiast zmierzyć zarówno podstawowe parametry, jak i automatycznie na ich podstawie obliczyć moc - jest to wygodniejsze i szybsze niż wykonywanie obliczeń osobno. Wiele z tych urządzeń to cęgi (patrz „Urządzenie”) i pomiar prądu przy wyznaczaniu mocy odbywa się w sposób bezkontaktowy, a napięcie mierzone jest klasyczną metodą stykową. Istnieją inne opcje projektowe - na przykład adapter do gniazdka: urządzenie elektryczne jest podłączone do gniazdka przez taki adapter, a multimetr pobiera dane dotyczące prądu i napięcia z adaptera. Przypominamy również, że moc czynna (użyteczna) prądu przemiennego nie zawsze jest równa pełnej – przy obciążeniu pojemnościowym i/lub indukcyjnym część mocy (moc bierna) jest „zużywana” przez kondensatory/cewki. Możesz przeczytać więcej o tych parametrach w dedykowanych źródłach, ale tutaj zauważamy, że różne modele multimetrów mogą mieć różne możliwości pomiaru różnych rodzajów mocy; te punkty nie zaszkodzą wyjaśnić przed zakupem z góry.

- Kąt fazowy. Pomiar stopnia przesunięcia fazowego dwóch sygnałów elektrycznych (lub parametrów sygnału). Specyficzne rodzaje i możliwości takich pomiarów są różne, najbardziej popularne są dwie opcje. Pierwszym z nich jest pomiar różnicy między fazami zasilania trójfazowego, przede wszystkim w celu oceny jego ogólnej jakości. Drugi to oszacowanie przesunięcia fazowego między prądem a napięciem, które występuje, gdy obciążenie reaktywne (pojemnościowe lub indukcyjne) jest przyłożone do źródła prądu przemiennego; stosunek mocy czynnej do mocy pozornej (współczynnik mocy, „cos phi”) bezpośrednio zależy od tego przesunięcia.

- Częstotliwość rotacji. W tym przypadku najczęściej mówimy o możliwości pomiaru prędkości obrotowej silnika spalinowego. W związku z tym takie modele są zwykle określane jako specjalistyczne multimetry samochodowe. Przeznaczone są głównie do diagnostyki i testowania silników nie posiadających elektronicznych układów zapłonowych. Do pomiaru z reguły należy dopasować multimetr do liczby cylindrów silnika i podłączyć go do układu zapłonowego (konkretna metoda podłączenia musi być określona w dokumentacji samochodu).

Zauważ, że nie wszystkie są wymienione na tej liście, ale tylko najpopularniejsze pomiary znalezione we współczesnych multimetrach i innych urządzeniach o podobnym przeznaczeniu. Oprócz nich projekt może przewidywać bardziej specyficzne funkcje - więcej szczegółów w rozdziale „Inne pomiary”.

Napięcie DC min.

Górna granica dolnego podzakresu, w którym urządzenie może mierzyć napięcie DC (patrz „Rodzaj napięcia”).

Zakresy robocze nowoczesnych multimetrów i innych przyrządów pomiarowych są zwykle podzielone na podzakresy. Odbywa się to dla dokładności i wygody pomiarów: na przykład, aby ocenić jakość baterii AA, można ustawić podzakres „do 3 V” - da to dokładność do dziesiątych, a nawet do setnych wolta, nieosiągalne przy pomiarze z wyższym progiem. Minimalne napięcie DC opisuje dokładnie dolny podzakres, przeznaczony do pomiaru najmniejszych wartości napięcia: na przykład, jeśli w tym punkcie określono 2000 mV, oznacza to, że dolny podzakres obejmuje wartości do 2000 mV (tj. do 2 V).

Warto wybierać według tego wskaźnika, biorąc pod uwagę specyfikę planowanego zastosowania: np. urządzenie z niskimi wskaźnikami może przydać się do prac delikatnych, takich jak naprawa komputerów czy telefonów komórkowych, ale do serwisowania elektryki pokładowej sieci samochodowej, nie jest wymagana szczególnie wysoka czułość na napięcie.

Napięcie AC min.

Górna granica dolnego podzakresu, w którym urządzenie może mierzyć napięcie przemienne (patrz „Rodzaj napięcia”).

Zakresy robocze nowoczesnych multimetrów i innych przyrządów pomiarowych są zwykle podzielone na podzakresy. Odbywa się to dla dokładności i wygody pomiarów: na przykład, aby sprawdzić transformator, który powinien dawać 6 V na wyjściu, sensowne jest ustawienie podzakresu z górnym progiem 10 V. Zapewni to dokładność do dziesiątych części wolt, nieosiągalny przy pomiarach z wyższym progiem. Minimalne napięcie DC opisuje dokładnie dolny podzakres, przeznaczony do pomiaru najmniejszych wartości napięcia: na przykład, jeśli w tym punkcie określono 2000 mV, oznacza to, że dolny podzakres obejmuje wartości do 2000 mV (tj. do 2 V).

Jeśli urządzenie jest kupowane do pomiarów w sieciach stacjonarnych - domowych przy 230 V lub przemysłowych przy 400 V - można zignorować parametr ten: z reguły minimalne podzakresy nie są w tym przypadku stosowane. Ale do pracy z zasilaczami, transformatorami obniżającymi napięcie i różnymi „cienkimi” urządzeniami elektronicznymi zasilanymi prądem przemiennym niskiego napięcia, warto wybrać model o niższym napięciu minimalnym. Wynika to nie tylko z zakresu pomiarowego: niski próg z reguły wskazuje na dobrą dokładność pomiaru przy niskich napięciach.

Napięcie AC max.

Najwyższe napięcie AC (patrz Typ napięcia), które można skutecznie zmierzyć za pomocą tego modelu. Parametr ten jest ważny nie tylko dla samych pomiarów, ale także dla bezpiecznej obsługi urządzenia: zmierzenie zbyt wysokiego napięcia w najlepszym wypadku uruchomi zabezpieczenie awaryjne (a możliwe, że po tym będzie trzeba poszukać nowego bezpiecznik do wymiany spalonego), w najgorszym przypadku - na awarię sprzętu, a nawet pożar. Ponadto dla bezpiecznych pomiarów niezwykle pożądany jest margines napięciowy – wynika to zarówno z charakterystyki prądu przemiennego, jak i z możliwości różnych nienormalnych sytuacji w sieci, przede wszystkim przepięć. Na przykład w przypadku sieci 230 V pożądane jest posiadanie urządzenia na co najmniej 250 V, a lepiej - na 300 - 310 V; szczegółowe zalecenia dotyczące innych przypadków można znaleźć w dedykowanych źródłach.

Zauważ, że większość multimetrów i innych podobnych urządzeń ma kilka zakresów pomiarowych, z różnymi maksymalnymi progami. Oznacza to, że dla bezpiecznego pomiaru napięcia bliskiego maksimum należy w ustawieniach ustawić odpowiedni tryb.

Prąd DC min.

Górna granica dolnego podzakresu, w którym urządzenie może mierzyć prąd stały (patrz „Rodzaj prądu”).

Zakresy robocze nowoczesnych multimetrów i innych przyrządów pomiarowych są zwykle podzielone na podzakresy. Odbywa się to dla dokładności i wygody pomiarów: im niższy podzakres, im mniejsze wartości obejmuje, tym wyższa dokładność pomiaru przy niskich wartościach prądu. Minimalny prąd stały opisuje dokładnie dolny zakres, przeznaczony dla najsłabszych wartości prądu: na przykład, jeśli charakterystyka w tym punkcie wskazuje 500 μA, oznacza to, że dolny podzakres pozwala mierzyć prądy od 0 do 500 μA.

Warto wybierać według tego wskaźnika biorąc pod uwagę specyfikę planowanej aplikacji: np. urządzenie z niskimi wskaźnikami może przydać się do prac delikatnych, takich jak naprawa komputerów czy telefonów komórkowych, ale do obsługi pokładowej sieci elektrycznej samochodów, zwłaszcza starych, nie jest wymagana szczególnie wysoka czułość prądowa.

Prąd AC min.

Górna granica dolnego podzakresu, w którym urządzenie może mierzyć prąd przemienny (patrz „Rodzaj prądu”).

Zakresy robocze nowoczesnych multimetrów i innych przyrządów pomiarowych są zwykle podzielone na podzakresy. Odbywa się to dla dokładności i wygody pomiarów: im niższy podzakres, im mniejsze wartości obejmuje, tym wyższa dokładność pomiaru przy niskich wartościach prądu. Minimalny prąd przemienny opisuje dokładnie dolny zakres, przeznaczony dla najsłabszych wartości prądu: na przykład, jeśli charakterystyka w tym punkcie wskazuje 500 μA, oznacza to, że dolny podzakres pozwala mierzyć prądy od 0 do 500 μA.

Warto wybierać według tego wskaźnika biorąc pod uwagę specyfikę planowanej aplikacji: np. urządzenie z niskimi wskaźnikami może przydać się do prac delikatnych, takich jak naprawa komputerów czy telefonów komórkowych, ale szczególnie wysoka czułość prądowa nie jest wymagana do obsługa domowych sieci energetycznych.

Rezystancja min.

Górna granica dolnego podzakresu, w którym urządzenie może mierzyć rezystancję.

Zakresy robocze nowoczesnych multimetrów i innych przyrządów pomiarowych są zwykle podzielone na podzakresy. Odbywa się to dla dokładności i wygody pomiarów: im niższy podzakres, im mniejsze wartości obejmuje, tym wyższa dokładność pomiaru przy niskich wartościach rezystancji. Minimalna rezystancja opisuje dokładnie dolny zakres, obliczony dla najsłabszych wartości prądu: na przykład, jeśli w charakterystyce w tym punkcie wskazano 500 Om, oznacza to, że dolny podzakres pozwala na pomiar rezystancji od 0 do 500 Om.

Wybierając według tego wskaźnika, musisz wziąć pod uwagę, jak ważne jest dla Ciebie dokładne zmierzenie małych oporów. Jednocześnie zauważamy, że 500 omów podane w przykładzie jest dość dobrym wskaźnikiem, wskazującym na dość solidną dokładność pomiaru rezystancji; w stosunkowo niedrogich multimetrach wskaźnik ten może wynosić 2, 5 lub nawet 10 kΩ, co zapewnia dokładność w najlepszym przypadku do kilkudziesięciu omów.

Rezystancja max.

Największy opór, jaki urządzenie może skutecznie zmierzyć.

Wybierając według tego wskaźnika należy przede wszystkim wziąć pod uwagę największe opory, które mają być mierzone. A jeśli mówimy o urządzeniu analogowym (patrz „Rodzaj”), musisz również pamiętać, że gdy zbliżasz się do maksymalnego oporu, dokładność pomiaru gwałtownie spada. Wynika to ze specyfiki pomiaru i kalibracji skali w takich urządzeniach: na przykład przy maksymalnej rezystancji 1 MΩ dokładność pomiaru w zakresie 0 - 2 kΩ może wynosić 0,2 kΩ, w zakresie 2 - 6 kΩ - 0,5 kΩ, w zakresie 6 - 10 kOm - już 1 kOm, a bliżej maksimum, wskaźnik ten może osiągnąć dziesiątki, a nawet setki kiloomów. Dlatego warto wybrać urządzenie analogowe tak, aby jego maksymalna rezystancja była co najmniej 10 razy wyższa od maksymalnych rezystancji, które planuje się zmierzyć - tylko pod tym warunkiem zapewniona jest mniej lub bardziej akceptowalna dokładność pomiaru.

Maks. wyświetlana wartość

Największa liczba, jaką może wyświetlić wyświetlacz DMM (patrz Typ).

Wskaźnik ten określa zakres, w jakim można dokonywać pomiarów bez zmiany ustawień. Tak więc, jeśli maksymalna liczba to 1999, pomiar można wykonać w zakresie od 0 do 1999 wybranych jednostek miary - na przykład od 0 do 1999 V, jeśli wybrane są wolty, od 9 do 1999 mA (1,999 A ) jeśli wybrano miliampery itp. Jednocześnie 1999 i mniej dla nowoczesnych przyrządów pomiarowych uważa się za raczej skromny wskaźnik, od 2000 do 3999 to średnia, 4000 - 9999 nie jest zła, a w najbardziej zaawansowanych modelach liczba ta przekracza 10000.

Zwróć uwagę, że maksymalna wyświetlana liczba jest bezpośrednio związana z pojemnością wyświetlacza - patrz poniżej.
Dynamika cen
UNI-T UT61B+ często porównują