Темна версія
Польща
Каталог   /   Інструмент і садова техніка   /   Вимірювальні прилади   /   Лазерні нівеліри й далекоміри

Порівняння Kraissmann 12 3D-LLA 25 RG vs Bosch GLL 2-10 Professional 0601063L00

Додати до порівняння
Kraissmann 12 3D-LLA 25 RG
Bosch GLL 2-10 Professional 0601063L00
Kraissmann 12 3D-LLA 25 RGBosch GLL 2-10 Professional 0601063L00
Товар застарівПорівняти ціни 15
ТОП продавці
Головне
Чохол.
Типлазерний нівелірлазерний нівелір
Призначеннядля охоплення області 360 °
Характеристики
Дальність вимірювань25 м10 м
Точність0.14 мм/м0.3 мм/м
Кут самовирівнювання3 °4 °
Час вирівнювання4 с4 с
Робоча температура-10 – 40 °C-10 – 50 °C
Різьба штатива1/4" та 5/8"1/4" та 5/8"
Автовимкнення
Автовимкнення приладу2 хв
Характеристики лазера
Випромінювання діода532 нм650 нм
Колір лазеразеленийчервоний
Клас лазера22
Вертикальних проєкцій21
Кут розгортки (верт.)360 °
Горизонтальних проєкцій11
Кут розгортки (гориз.)360 °
Функції та можливості
Блокування компенсатора
Бульбашковий рівень
Інше
Ступінь захисту IP54
Джерело живленняакумулятор3xAA
Час роботи9 год
Комплектація
трегер
магнітний тримач
кейс / чохол
пульт ДК
 
акумулятор
зарядний пристрій
подъемная платформа
 
 
кейс / чохол
 
батарейки
 
 
 
Габарити130x83x162 мм
Вага1300 г490 г
Дата додавання на E-Katalogчервень 2022листопад 2016

Призначення

Загальне призначення приладу.

Цей параметр вказується для моделей, що мають явно виражену спеціалізацію – в основному це лазерні нівеліри, в тому числі і ротаційні. Серед таких приладів зустрічаються такі варіанти призначення: для області 360°, тільки для точкових проєкцій, для підлоги та для труб< /a>. Ось особливості кожного з цих різновидів:

– Для охоплення області 360°. Повне коло, в 360°, за визначенням охоплюють всі ротаційні нівеліри (див. «Тип»). Однак така спеціалізація може зустрічатися і в «звичайних» лазерних моделях. У таких пристроях охоплення повних 360° забезпечується іншими способами – зазвичай наявністю декількох випромінювачів, кожен з яких перекриває свій сектор, або спеціальної призми, що розсіює промінь від одного випромінювача на повні 360°.

– Тільки точкові проєкції. Нівеліри з даною особливістю при роботі не формують міток у вигляді ліній і «малюють» тільки точки. При цьому в найпростіших моделях точкова проєкція всього одна, але частіше зустрічаються прилади з декількома мітками (до 5). У будь-якому разі подібні прилади призначаються для порівняно простих робіт, де немає потреби в розмітці по лініях.

– Для підлоги. Нівеліри, призначені для роботи з підлогою — стяжки, укладання покриттів тощо. Загальна особливість подібних приладів — досить широка основа, що дає можливі...сть, власне, ставити пристрій прямо на підлогу. А ось конкретна конструкція і особливості роботи нівелірів цього типу можуть бути різними. Так, досить популярні пристрої характерного компонування — з двома вертикальними проекціями, що перетинаються під кутом 90° (в деяких моделях передбачаються ще дві проєкції, спрямовані в протилежні сторони від основних). Такий прилад може використовуватися не тільки на підлозі, але і на стінах: якщо щільно прикласти його основою до тієї чи іншої поверхні, він сформує на ній дві чітко перпендикулярні лінії. У разі підлоги це буває зручно, наприклад, при укладанні плитки.
Інший поширений різновид нівелірів для підлоги – прилади, призначені для виявлення нерівностей. Для цього використовується лінія, сформована на підлозі за допомогою вертикальної проєкції. При роботі розміщений на підлозі і вивірений по горизонталі нівелір повертається навколо вертикальної осі, і лінія «сканує» підлогу; при попаданні на виступ вона стає нерівною. Відзначимо, що в найпростіших моделях такий «сканер» використовує всього одну проєкцію, проте зустрічається і більш прогресивний варіант — лінія, створена відразу двома проекціями. Такий покажчик при попаданні на нерівність підлоги розділяється на дві окремих лінії — це значно помітніше, ніж відхилення при використанні однієї проєкції.

– Для труб. Досить рідкісний різновид спеціалізованих лазерних нівелірів – прилади для прокладки трубопроводів. Використовуються, зокрема, при будівництві водопровідних, каналізаційних та зливових систем. Нівеліри для труб найчастіше мають характерну циліндричну форму, з рукояткою на одному торці і точковим лазерним випромінювачем на іншому. Встановлюються вони горизонтально на спеціальні ніжки (в комплекті зазвичай постачається кілька наборів таких ніжок, що розрізняються за висотою); в конструкції зазвичай є механізм самовирівнювання з досить великими можливостями; а необхідна точність вимірів забезпечується за рахунок мішені зі спеціальною розміткою. Подібні прилади дають змогу як мінімум точно прокладати горизонтальні магістралі, а багато з них допускають ще й роботу з кутами.

Дальність вимірювань

Дальність застосування, де пристрій залишається повністю працездатним без використання додаткових приймачів (див. нижче); іншими словами - радіус його дії без допоміжних пристроїв.

У деяких моделях може вказуватися діапазон, який демонструє мінімальну ( 3 см, 5 см) та максимальну дальність вимірювання. Але здебільшого вказується лише максимальне значення.

Конкретний зміст цього параметра визначається типом інструмента (див. вище). Наприклад, для оптичних нівелірів дальність вимірювань - це найбільша відстань, на якій оператор зможе нормально бачити поділ стандартної нівелірної рейки. Для лазерних нівелірів цей параметр визначає відстань від приладу до поверхні, на яку проєктується мітка, при якому ця проекція без проблем буде видно неозброєним оком; а в далекомірах йдеться про найбільшу дистанцію, що піддається виміру. Зазвичай дальність вимірів вказується для ідеальних умов, зокрема, за відсутності домішок у повітрі; на практиці вона може бути меншою через пил, туман, або навпаки, яскраве сонячне світло, що «перекриває» мітку. У той же час інструменти одного типу можна порівнювати за цією характеристикою.

Зауважимо, що вибирати прилад за радіусом дії варто з урахуванням особливостей тих завдань, які планується вирішувати за його допомогою: адже велика дальність вимірювань зазвичай відчутно позначається на габаритах, вазі, енергоспоживання та ціні, а потрібна вона дал...еко не завжди. Наприклад, навряд чи має сенс шукати сильний лазерний нівелір на 30-40 м, якщо Вам потрібен прилад для оздоблювальних робіт у стандартних квартирах.

Точність

Точність вимірювань, що забезпечується тим чи іншим різновидом нівеліра (див. «Тип»).

Точність в даному разі вказують за похибкою – тобто найбільшим відхиленням результатів вимірювання від фактичних значень вимірюваної величини. В нівелірах таке відхилення прийнято позначати в міліметрах на метр дистанції до рейки, мішені тощо. Це позначення більш практичне і інтуїтивно зрозуміле, ніж зазначення кутової похибки; зокрема, воно дає змогу з легкістю визначати максимальне відхилення для тієї чи іншої дистанції. Наприклад, якщо прилад має точність 0,3 мм/м, то на дистанції в 7 м відхилення мітки від того положення, де вона повинна бути, не буде перевищувати 0,3*7 = 2,1 мм.

Відповідно, чим менше цифра в даному пункті – тим більш високу точність забезпечує прилад. Низькі показники похибки особливо важливі на великих дистанціях — адже фактичне (лінійне) відхилення, як ми бачимо, зі збільшенням відстані зростає пропорційно. З іншого боку, збільшення точності неминуче позначається на вартості, а в деяких ситуаціях — також габаритах і вазі приладів, притому що реальна потреба в таких характеристиках виникає далеко не завжди. Характерний випадок якраз описаний в прикладі вище: 0,3 мм/м – це середня точність сучасного лазерного нівеліра, а відхилення в 2,1 мм, що отримується на дистанції в 7 м, можна порівняти з товщиною самої мітки. Якщо вже мова зайшла про конкретні цифри, відзначимо, що в оптичних нівелірах похибка зазвичай не перевищує 0,05 – 0,1 мм/м, в ротаційн...их — 0,1 – 0,15 мм/м, а в звичайних лазерних вона може варіюватися і становить від 0,2 мм/м до близько 1 мм/м.

Наостанок варто окремо торкнутися оптичних нівелірів. Для них наводиться ще й такий показник, як СКП — середньоквадратична похибка; а вона значно (на порядки) менше, ніж заявлена точність. Детальніше про СКП див. відповідний пункт нижче; тут же відзначимо, що середньоквадратична похибка характеризує тільки якість самого приладу, а точність в мм/м описує його ефективність в реальних умовах — при роботі зі стандартною нівелірною рейкою. Тобто при визначенні реальних можливих відхилень варто орієнтуватися не на СКП, а саме на даний показник.

Кут самовирівнювання

Максимальне відхилення від горизонтального положення, яке прилад здатний виправити «власними засобами».

Саме по собі самовирівнювання значно спрощує встановлення і початкове калібрування нівелірів (див. «Тип»), які для роботи нерідко (а для оптичних моделей — обов'язково) потрібно виставляти по горизонталі. При наявності цієї функції досить встановити прилад більше-менш рівно (у багатьох моделях для цього передбачаються спеціальні пристосування на зразок круглих рівнів) — а точне підлаштування в поздовжній та поперечній площині буде проведено автоматично. А межі самовирівнювання вказуються зазвичай для обох площин; чим більше цей показник — тим простіше прилад у встановленні, тим менше він вимогливий до початкового розміщення. В окремих моделях цей показник може досягати 6 – 8°.

Робоча температура

Діапазон температур, при якому прилад здатний гарантовано працювати досить довгий час без збоїв, поломок і перевищень зазначеної характеристик похибки вимірювань. Варто враховувати, що мова йде насамперед про температуру корпусу пристрою, а вона залежить не тільки від температури навколишнього повітря — до прикладу, залишений на сонці інструмент може перегрітися навіть у досить прохолодну погоду.

Загалом звертати увагу на цей параметр варто тоді, коли Ви шукаєте модель для роботи на відкритому повітрі, в неопалюваних приміщеннях та інших місцях з умовами, відчутно відрізняються від кімнатних; в першому випадку має сенс також переконатися в наявності пиловологозахисту (див. «Клас захисту»). З іншого боку, навіть відносно прості і «короткозорі» нівеліри/далекоміри зазвичай добре переносять і спеку, і холод.

Автовимкнення приладу

Час, через який прилад сам по собі повністю вимикається, якщо користувач не робить ніяких дій.

Детальніше про автовимикання див. вище; а його час має двояке значення. З одного боку, якщо цей час невеликий — то і час роботи приладу «вхолосту» буде мінімальним, що сприяє економії енергії. З іншого боку, занадто часте автовимикання (з подальшим вмиканням для роботи) також небажане — воно підсилює знос компонентів і знижує ресурс, та й для користувача не завжди зручне. Так що виробники вибирають час з урахуванням балансу між цими моментами, а також загального класу і призначення приладу. Наприклад, в деяких далекомірах даний показник не досягає і хвилини, хоча в більшості подібних приладів він знаходиться в діапазоні від 3 до 8 хвилин; а в окремих професійних пристроях (перш за все нівелірах) час автовимикання може становити 30 хвилин і більше (до 3 годин).

Випромінювання діода

Довжина хвилі випромінювання, видається світлодіодом нівеліра або далекоміра; цей параметр визначає насамперед колір лазерного променя. Найбільше поширення в сучасних моделях набули світлодіоди з довжиною хвилі близько 635 нм — при відносно невисокій вартості вони забезпечують яскраве випромінювання червоного кольору, що дає непогано видиму проєкцію. Зустрічаються також зелені лазери, зазвичай на 532 нм — мітки від них видно ще краще, однак такі світлодіоди коштують досить дорого і застосовуються рідко. А випромінювання з хвилею довше 780 нм належить до інфрачервоного спектру. Такий лазер невидимий неозброєним оком і погано підходить для нівелювання, однак може застосовуватися в дальномерах — зрозуміло, за наявності видошукача (докладніше див. «Тип»).

Колір лазера

Колір лазерного променя, що видається приладом.

Найбільшою популярністю в наш час користуються червоні лазери: вони порівняно недорогі, досить ефективні і функціональні, а також непогано помітні на більшості поверхонь. У свою чергу, зелені лазери краще помітні людським оком (при тій же потужності випромінювача); проте коштують вони помітно дорожче за червоні, споживають більше енергії і мають менший термін служби, а тому й зустрічаються значно рідше.

Лінії синього кольори рідко зустрічаються у лазерних приладах. Їхня конкурентна перевага перед традиційними зеленими та червоними лазерами — висока яскравість, що зумовлює відмінну видимість променів на багатьох поверхнях, у т.ч. під час виконання робіт на свіжому повітрі.

В окремих приладах можна зустріти одразу два види лазерів – і червоний, і зелений. Як правило, це нівеліри з кількома проекціями, де зелений колір використовується для побудови площин, а червоний для точкових проекцій.

Вертикальних проєкцій

Кількість вертикальних проєкцій, які видаються лазерним нівеліром під час роботи.

Більшість сучасних нівелірів розраховані на строго певне положення під час роботи; відповідно, вертикальної називають проєкцію, проведену зверху вниз відносно штатного положення приладу. За наявності декількох таких площин нівелір можна використовувати для двох, а то й трьох стін відразу — це стане в нагоді, наприклад, для одночасної роботи кількох людей. Водночас існують портативні пристрої, які можуть застосовуватися в різних положеннях; для них вертикальної називають основну робочу площину, хоча під час роботи вона може розташовуватися і горизонтально, і під кутом, у залежності від конкретних задач. Також відзначимо, що вертикальна проєкція може давати і горизонтальну лінію — наприклад, при установці нівеліра на підлозі.

Варто враховувати, що кількість проєкцій вважається не по геометричних площин, а за окремими лазерним елементів, кожен з яких відповідає за свою ділянку роботи». Наприклад, якщо нівелір має два вертикальних елемента, розташованих на протилежних торцях і спрямованих у різні сторони, вони вважаються за дві проєкції навіть у тому випадку, якщо ці проєкції лежать в одній площині.
Динаміка цін
Kraissmann 12 3D-LLA 25 RG часто порівнюють
Bosch GLL 2-10 Professional 0601063L00 часто порівнюють