Dokładność
Dokładność jest opisana jako maksymalne odchylenie od prawdziwej wartości mierzonego parametru, jakie może dać urządzenie, jeśli przestrzegane są wszystkie zasady jego działania i odpowiednie pomiary. Zarówno w dalmierzach, jak i niwelatorach parametr ten jest zwykle wyznaczany na pewną odległość – np. 3 mm na 30 m; ale nawet dla tego samego producenta te odległości „kontrolne” mogą być różne. Dlatego w naszym katalogu dokładność wszystkich urządzeń jest przeliczana na 1 m odległości; przy takim rekordzie dla przykładu powyżej będzie to 3/30 = 0,1 mm/m. Ułatwia to porównywanie ze sobą różnych modeli.
Należy również powiedzieć, że znaczenie parametru „dokładność” dla różnych typów przyrządów pomiarowych (patrz „Rodzaj”) będzie różne. W przypadku niwelatorów optycznych opisano to w punkcie „SKP” powyżej. W przypadku laserów wszystkich typów dokładność to maksymalne odchylenie znaku od rzeczywistego poziomu (lub pionu, jeśli taka funkcja jest przewidziana), a dla poziomu można mówić zarówno o przesunięciu znaku w górę / w dół, jak i o jego obrót. W dalmierzach ta cecha opisuje maksymalną różnicę (zarówno w „plusie”, jak i „minusie”) między odczytami urządzenia a rzeczywistą odległością od obiektu.
W każdym razie im mniejszy błąd, tym lepiej; z drugiej strony dokładność znacząco wpływa na cenę urządzenia. Dlatego konieczne jest wybranie konkretnego modelu dla tego parametru, biorąc pod uwagę specyfikę planowanej pracy. Na przykład stosunkowo prosta naprawa w m...ieszkaniu prawdopodobnie nie będzie wymagała precyzyjnego narzędzia; a zalecenia dotyczące bardziej złożonych zadań można znaleźć w specjalistycznych źródłach, od zaleceń ekspertów po oficjalne instrukcje.
Czas poziomowania
Przybliżony czas, jaki zajmuje mechanizmowi samopoziomowania doprowadzenie poziomu do idealnie wypoziomowanej pozycji.
Aby uzyskać więcej informacji na temat takiego mechanizmu, zobacz Limity poziomu własnego. A rzeczywisty czas jego wyrównania zależy bezpośrednio od rzeczywistego odchylenia urządzenia od poziomu. Dlatego w charakterystyce z reguły podany jest maksymalny czas osiowania - czyli dla sytuacji, gdy w pozycji wyjściowej urządzenie jest pochylone pod maksymalnym kątem w obu osiach, wzdłużnej i poprzecznej. Ponieważ poziomnice są dalekie od zainstalowania w tej pozycji, w praktyce prędkość doprowadzenia do poziomu jest często wyższa niż deklarowana. Niemniej jednak sensowne jest ocenianie różnych modeli dokładnie według liczb podanych w charakterystyce - pozwalają one oszacować maksymalny czas, który trzeba będzie poświęcić na wyrównanie po następnym ruchu urządzenia. Jeśli chodzi o określone wskaźniki, mogą one wynosić od 1,5 - 2 s do 30 s.
Teoretycznie im krótszy czas wyrównania, tym lepiej, zwłaszcza jeśli czeka nas duża liczba pracy z częstymi ruchami z miejsca na miejsce. Jednak w praktyce porównując różne modele warto wziąć pod uwagę inne punkty. Po pierwsze, powtarzamy, że tempo wyrównywania w dużym stopniu zależy od limitów wyrównywania; w końcu im większe kąty odchylenia, tym więcej czasu zajmuje mechanizmowi powrót do poziomu. Tak więc, aby bezpośrednio porównać ze sobą pod względem szybkości samopoziomowania, to głównie te urządzen...ia, w których dopuszczalne kąty odchylenia są takie same lub nieznacznie się różnią. Po drugie, przy wyborze warto wziąć pod uwagę specyfikę proponowanej pracy. Jeśli więc urządzenie ma być często używane na bardzo nierównych powierzchniach, to na przykład model z czasem poziomowania 20 s i limitem samopoziomowania 6° będzie rozsądniejszym wyborem niż urządzenie z czasem 5 s i granice 2 °, ponieważ w drugim przypadku początkowa (ręczna) instalacja urządzenia zajmie dużo czasu. A dla mniej więcej równych płaszczyzn poziomych wręcz przeciwnie, szybsze urządzenie może być najlepszą opcją.
Temperatura robocza
Zakres temperatur, w których gwarantowana jest praca urządzenia przez wystarczająco długi czas bez awarii, awarii i przekroczenia błędu pomiarowego określonego w charakterystyce. Należy mieć na uwadze, że mówimy przede wszystkim o temperaturze obudowy urządzenia, a to zależy nie tylko od temperatury otoczenia – np. narzędzie pozostawione na słońcu może się przegrzać nawet przy dość chłodnej pogodzie.
Generalnie warto zwrócić uwagę na parametr ten, gdy szukasz modelu do pracy na zewnątrz, w nieogrzewanych pomieszczeniach i innych miejscach o warunkach znacząco odbiegających od warunków pokojowych; w pierwszym przypadku warto również zadbać o ochronę przed kurzem i wilgocią (patrz „Klasa ochrony”). Z drugiej strony, nawet stosunkowo proste i „krótkowzroczne” niwelatory/dalmierze zazwyczaj dobrze znoszą ciepło i zimno.
Klasa lasera
Klasa lasera użytego w niwelatorze lub dalmierzu (patrz „Rodzaj”). Parametr ten określa przede wszystkim bezpieczeństwo stosowanego promieniowania oraz środki ostrożności podczas pracy z urządzeniem. Klasyfikacja laserów w różnych krajach ma swoje własne cechy, ale wspólne cechy są charakterystyczne dla wszystkich opcji. Obecnie istnieją 4 główne klasy, ich główne cechy, które są istotne dla niwelatorów / dalmierzy, są następujące:
1 - Bardzo niska moc, laser jest bezpieczny nawet przy długotrwałej ekspozycji na siatkówkę. Z drugiej strony takie emitery słabo nadają się do przyrządów pomiarowych i praktycznie nie są w nich stosowane.
2 - Niska moc, uszkodzenie oczu jest możliwe tylko przy bezpośredniej ekspozycji na laser przez długi czas (chociaż nadal nie warto kierować wiązki w oczy). Najpopularniejsza klasa w nowoczesnych niwelatorach i dalmierzach poziomu podstawowego i średniego, a także może być stosowana w profesjonalnych - takie lasery stanowią dobry kompromis między zasięgiem a bezpieczeństwem.
3 - Wysoka moc, która może uszkodzić oko, gdy jest wystawiona zarówno na bezpośrednie, jak i odbite promieniowanie zwierciadlane. Należy pamiętać, że do tej klasy mogą należeć lasery, które są bezpieczne dla krótkotrwałej ekspozycji na siatkówkę, ale dla gwarancji warto założyć, że wszystkie „trojaczki”, w jakiejkolwiek modyfikacji, stanowią poważne zagrożenie. Takie nadajniki są instalowane w profesjonalnych niwelatorach i dalmierzach „dalekiego zasięgu”;...zasady bezpieczeństwa podczas pracy z nimi obejmują co najmniej używanie okularów ochronnych.
4 - Niezwykle wysoka moc, niespotykana w instrumentach geodezyjnych.
Przypominamy, że środki ostrożności podczas pracy z dowolnym laserem są zwykle szczegółowo opisane w instrukcji narzędzia, a przed rozpoczęciem pracy należy się z nimi zapoznać.
Zasilanie
Typ i liczba ogniw zasilających, stosowanych w niwelatorze/dalmierzu. Wszystkie elementy o standardowych rozmiarach (
AA,
AAA,
C,
D,
9 V) produkowane są w dwóch wariantach - baterie jednorazowe i akumulatorki. Daje to użytkownikowi wybór: albo dokupywać za każdym razem stosunkowo niedrogie baterie, albo zainwestować jeden raz w baterię z ładowarką, a następnie po prostu ładować baterię w razie potrzeby.
Oryginalne baterie są z definicji przeznaczone do wielokrotnego ładowania, podobnie jak
akumulatory 18650.
Konkretne rodzaje zasilania dziś mogą wyglądać następująco:
— AA. Standardowe ogniwo, potocznie nazywane „paluszek”. Moc tych ogniw jest średnia, można je stosować zarówno w prostych urządzeniach, jak i dość zaawansowanych oraz „dalekiego zasięgu”. Takie zasilanie jest wygodne ze względu na to, że baterie AA są bardzo powszechne i sprzedawane prawie wszędzie - dzięki temu ich wyszukanie i wymiana zwykle nie stanowi problemu.
— AAA. Mniejsza wersja opisanego powyżej ogniwa AA - prawie identyczna w kształcie, jednak cieńsza i krótsza. Takie ogniwa, zwane „paluszkami mini” mają dość małą pojemność i moc, są jednak niezbędne w urządzeniach przenośnych, gdzie kompaktowość ma kluczowe znaczenie. Również są dość powszechn
...e.
- C. Cylindryczne ogniwo, w postaci charakterystycznej, dość grubej „beczułki” - przy długości 50 mm średnica wynosi 26 mm. Ze względu na większą pojemność i moc, niż u AA, lepiej nadaje się do zaawansowanych modeli z laserami „dalekiego zasięgu”, jednak jest rzadziej używane i ogólnie mniej powszechne.
- D. Największy i najbardziej pojemny typ standardowych baterii, spotykany we współczesnych niwelatorach i dalmierzach: grubość i średnica wynoszą odpowiednio 62 i 34 mm. Głównym obszarem zastosowania baterii D są wydajne urządzenia profesjonalne.
- Akumulator. W danym przypadku chodzi o zasilanie narzędzia z oryginalnej baterii, która nie jest zaliczana do żadnego standardowego rozmiaru. Ten wariant jest dobry, ponieważ kompletne baterie są początkowo tworzone dla konkretnego modelu niwelatora/dalmierza i są od razu dostarczane w zestawie (a w niektórych modelach są na ogół niewymienne); ponadto ich właściwości mogą znacznie przewyższać standardowe ogniwa o podobnym rozmiarze i wadze. Z drugiej strony takie zasilanie jest mniej wygodne przy wyczerpaniu baterii w niewłaściwym momencie: jedynym sposobem na naprawę sytuacji jest zwykle doładowanie, a zajmuje to dość dużo czasu (podczas gdy standardowe baterie można wymienić w zaledwie minutę ).
- 18650. Nazwa tych baterii pochodzi od ich wymiarów: 18,6x65,2 mm, cylindryczne, zewnętrznie przypominają nieco powiększone ogniwa AA, jednak mają napięcie robocze około 3,7 V i większą pojemność. Ponadto wszystkie ogniwa typu 18650 z definicji nie są bateriami jednorazowymi, lecz akumulatorami (typu litowo-jonowego).
— Bateria 9 V. 9-woltowe baterie o charakterystycznym prostokątnym kształcie, z parą styków na jednym z końców. Ze względu na wysokie napięcie robocze zapewniają dobrą moc i rzeczywistą pojemność, więc do działania zwykle wystarcza jedna taka bateria.
— LR44. Miniaturowe baterie typu pastylka o średnicy 11,6 mm i grubości 5,4 mm. Zwykle instalowane w zestawach po 3 sztuki i stosowane w kompaktowych niwelatorach laserowych małej mocy, dla których małe wymiary są ważniejsze niż moc i pojemność. Należy pamiętać, że oznaczenie LR44 odnosi się w szczególności do stosunkowo niedrogich baterii alkalicznych; droższe i bardziej zaawansowane srebrno-cynkowe źródła zasilania oznaczane są jako SR44 lub 357.
— 23A12V. Rzadka odmiana: baterie cylindryczne (długość 29 mm, średnica 10 mm) o napięciu nominalnym 12 V.Czas pracy
Czas pracy urządzenia na jednym ładowaniu baterii.
Należy zauważyć, że liczby te są dość przybliżone, ponieważ czas pracy jest mierzony dla pewnych standardowych warunków (zwykle dla ciągłej pracy przy mocy znamionowej). A ponieważ w praktyce warunki mogą się znacznie różnić, czas pracy może być zauważalnie krótszy lub dłuższy od deklarowanego. Dodatkowo, jeśli urządzenie używa wymiennych baterii (AAA, AA itp.) to autonomia zależeć będzie również od jakości konkretnych baterii/akumulatorów. Niemniej jednak, na podstawie danych podanych w specyfikacji, całkiem możliwe jest oszacowanie możliwości określonych modeli i porównanie ich ze sobą: różnica w deklarowanym czasie pracy z reguły odpowiada proporcjonalnie różnicy w praktycznej autonomii przy tych samych warunkach.
Zauważmy również, że czas pracy jest podawany głównie dla niwelatorów; w dalmierzach częściej używany jest inny parametr - liczba pomiarów (patrz poniżej).