Polska
Katalog   /   Dom i remont   /   Zasilanie awaryjne   /   Inwertery i kontrolery

Porównanie ANENJI ANJ-SP-2200H-12V vs Brazzers BCT-2000VA

Dodaj do porównania
ANENJI ANJ-SP-2200H-12V
Brazzers BCT-2000VA
ANENJI ANJ-SP-2200H-12VBrazzers BCT-2000VA
Produkt jest niedostępnyWkrótce w sprzedaży
TOP sprzedawcy
Rodzaj urządzeniainwerter hybrydowyautonomiczny falownik (off-grid)
Rodzaj sieci1 faza (230 V)1 faza (230 V)
Maks. sprawność98 %93 %
Wejście/wyjście prądu przemiennego
Nominalna moc wyjściowa2200 VA
Moc nominalna1800 W1200 W
Moc szczytowa4400 W2000 W
Maksymalny prąd przemienny30 А
Kształt napięcia wyjściowegoczysta sinusoidaczysta sinusoida
Liczba gniazd1 szt.
Akumulatory i ładowanie DC
Napięcie akumulatora12 V12 V
Liczba wejść akumulatorowych1 szt.1 szt.
Maksymalny prąd ładowania80 А
Panele PV
Maks. moc wejściowa2 kW
Napięcie robocze PV55 – 450 V170 – 280 V
Kontrolery MPPT1 szt.
Funkcje i sterowanie
Funkcje
funkcja UPS-a
wbudowany monitoring
 
 
Interfejsy
RS232
RS485
 
 
Zabezpieczenie
zabezpieczenie przed zwarciem
zabezpieczenie przed przeciążeniem
zabezpieczenie przed przegrzaniem
zabezpieczenie przed zwarciem
zabezpieczenie przed przeciążeniem
zabezpieczenie przed przegrzaniem
Dane ogólne
Wyświetlaczotwartebrak
Chłodzenieaktywne (wentylatory)aktywne (wentylatory)
Klasa ochrony obudowyIP21
Temperatura pracy-10 °C ~ +55 °C0 °C ~ +50 °C
Wymiary405x286x98 mm348x200x70 mm
Waga4.5 kg11 kg
Data dodania do E-Kataloglistopad 2023listopad 2023

Rodzaj urządzenia

Autonomiczny falownik. Przetwornice napięcia i prądu, które nie są podłączone do zewnętrznej sieci elektrycznej. Mają one służyć jako część autonomicznych systemów fotowoltaicznych – takie falowniki wytwarzają prąd, który jest wydatkowany wyłącznie na potrzeby gospodarstwa domowego. Może być zużywany bezpośrednio przez urządzenia gospodarstwa domowego lub gromadzony w bateriach. Ten typ falownika jest często nazywany off-grid.

Falownik sieciowy. Falowniki pracujące synchronicznie z zewnętrzną siecią zasilającą. Przeznaczone są do zamiany energii słonecznej na prąd przemienny o parametrach sieci ogólnej. Falowniki przyłączane do sieci stosowane są w układach bezbateryjnych – cała wytworzona energia wykorzystywana jest na własne potrzeby, a nadwyżka przekazywana jest do sieci po „taryfie gwarantowanej”. W tym celu dostosowywane są niektóre wskaźniki wytwarzanej energii elektrycznej, w szczególności eliminowane są różnice amplitud, wyrównywana częstotliwość sieci itp. Falowniki sieciowe nazywane są również falownikami on-grid.

Falownik hybrydowy. Falowniki akumulatorowo-sieciowe to unikalne hybrydy przetwornic autonomicznych i sieciowych. Właściwie to stąd wzięła się nazwa hybryda. Falowniki tego typu współpracują z łańcuchami akumulatorów, a nadwyżka energii elektrycznej przesyłana jest do sieci ogólnej. Zapewnia to niezależność energetyczną systemu op...artego na panelach słonecznych z możliwością wykorzystania energii zgromadzonej w akumulatorach bez odłączania od sieci. Na przykład, jeśli priorytetem jest zasilanie prądem stałym, energia jest dostarczana głównie z akumulatorów, a wszelkie niedobory energii są dostarczane z sieci zewnętrznej. Przyda się to w przypadku złych warunków pogodowych lub braku prądu generowanego przez panele fotowoltaiczne. Jeżeli energia elektryczna jest wytwarzana w nadmiarze, nadwyżka energii jest uwalniana do sieci ogólnej według „taryfy gwarantowanej”.

Maks. sprawność

Sprawność falownika dla paneli fotowoltaicznych.

Wskaźnik efektywności to procentowy stosunek ilości energii, jaką urządzenie dostarcza do obciążenia, do energii pobranej z panelu słonecznego. Im wyższy ten parametr, tym wydajniejsza praca urządzenia i mniejsze straty podczas konwersji. W nowoczesnych falownikach do paneli fotowoltaicznych wartości sprawności poniżej 90% uważa się za średnie, a powyżej 90% za dobre.

Nominalna moc wyjściowa

Znamionowa moc wyjściowa falownika wyrażona w woltoamperach (VA). W rzeczywistości wskaźnik ten jest podobny do mocy w watach (W).

Parametr ten oznacza moc, jaką urządzenie może dostarczać odbiorcom przez nieograniczony czas. Należy wybrać według tego wskaźnika, aby moc znamionowa falownika pokrywała pobór mocy oczekiwanego obciążenia o około 15-20%. Warto również wziąć pod uwagę, że niektóre urządzenia elektryczne (w szczególności urządzenia z silnikami elektrycznymi - odkurzacze, lodówki itp.) zużywają znacznie więcej energii podczas uruchamiania niż po wejściu w tryb. W przypadku takiego obciążenia konieczne jest również określenie mocy szczytowej falownika (patrz odpowiedni punkt) - powinna ona być wyższa niż moc rozruchowa obciążenia.

Moc nominalna

Znamionowa moc wyjściowa falownika wyrażona w watach (W).

Parametr ten oznacza moc, jaką urządzenie może dostarczać odbiorcom przez nieograniczony czas. Należy wybrać według tego wskaźnika, aby moc znamionowa falownika pokrywała pobór mocy oczekiwanego obciążenia o około 15-20%. Warto również wziąć pod uwagę, że niektóre urządzenia elektryczne (w szczególności urządzenia z silnikami elektrycznymi - odkurzacze, lodówki itp.) zużywają znacznie więcej energii podczas uruchamiania niż po wejściu w tryb. W przypadku takiego obciążenia konieczne jest również określenie mocy szczytowej falownika (patrz odpowiedni punkt) - powinna ona być wyższa niż moc rozruchowa obciążenia.

Moc szczytowa

Największa całkowita moc wyjściowa w watach (W), jaką falownik może dostarczyć do obciążenia przez stosunkowo krótki okres czasu, rzędu 2 do 3 sekund. Z reguły moc ta jest o 30–50% większa niż moc znamionowa (patrz wyżej). Wartość obciążenia szczytowego może być przydatna przy obliczaniu współpracy falownika z urządzeniami, które w momencie rozruchu zużywają dużo energii (odkurzacze, pompy odwiertowe, elektronarzędzia itp.). Zasada jest tu prosta – moc szczytowa falownika nie może być niższa od mocy rozruchowej obciążenia.

Maksymalny prąd przemienny

Maksymalny prąd w amperach (A), jaki falownik podczas pracy jest w stanie generować bez przeciążeń i awarii.

Liczba gniazd

Ilość standardowych gniazd 230 V przewidziana w konstrukcji falownika.

Im więcej gniazdek, tym więcej urządzeń elektrycznych można jednocześnie podłączyć do falownika. Jednocześnie specyfika stosowania konwerterów jest taka, że rzadko trzeba je używać dla kilku urządzeń jednocześnie. Dodatkowo jednoczesne podłączenie wymaga odpowiedniej mocy (patrz „Nominalna moc wyjściowa”), a same gniazda również znacząco wpływają na wymiary. Dlatego najczęściej w nowoczesnych falownikach domowych stosuje się jedno gniazdo - z reguły to wystarczy. Jednak wysokiej jakości mocne falowniki mogą mieć dwa gniazda.

Maksymalny prąd ładowania

Maksymalna ilość prądu stałego w amperach, którą falownik może przetworzyć. Jeśli panel fotowoltaiczny wytworzy prąd przekraczający tę wartość, falownik po prostu go nie wykorzysta. Często ma to swoje uzasadnienie w przypadku podłączenia falownika do paneli fotowoltaicznych dużej mocy – maksymalny prąd wejściowy falownika zostaje zredukowany do akceptowalnych wartości, dzięki czemu do przesyłania energii można używać przewodów o umiarkowanych rozmiarach.

Maks. moc wejściowa

Maksymalna dopuszczalna moc wejściowa z paneli fotowoltaicznych, wyrażona w kilowatach (kW). Przypomnijmy, że 1 kW to 1000 watów.

Wybierając inwerter na podstawie tego parametru, należy opierać się na całkowitej mocy paneli fotowoltaicznych zaangażowanych w wytwarzanie energii elektrycznej. Co więcej, często warto wybierać modele o mocy wejściowej inwertera nieco mniejszej niż maksymalna moc paneli fotowoltaicznych – na przykład, jeśli są one przez część czasu zacienione lub z innych powodów nie otrzymują wystarczającej ilości światła słonecznego w ciągu dnia. Moc baterii słonecznej nie powinna przekraczać mocy inwertera o więcej niż 30%. Jednak w przypadku niektórych inwerterów nadmiar może wynosić tylko 10%, podczas gdy w przypadku innych urządzeń może sięgać nawet 100%. Tę kwestię najlepiej wyjaśnić przed zakupem.