Moc znamionowa
Moc znamionowa generatora to najwyższa moc, jaką agregat jest w stanie bezproblemowo dostarczać przez nieograniczony czas. W „najsłabszych” modelach liczba ta wynosi
mniej niż 1 kW, w najmocniejszych —
50 — 100 kW, a nawet
więcej; generatory z modułem spawalniczym (patrz poniżej) mają zwykle moc znamionową od
1 — 2 kW do
8 — 10 kW.
Główna zasada wyboru w tym przypadku jest następująca: moc znamionowa nie może być niższa niż całkowity pobór mocy całego podłączonego obciążenia. W przeciwnym razie generator po prostu nie będzie w stanie zapewnić wystarczającej ilości energii lub będzie działał z przeciążeniami. Jednak, aby wyjaśniać minimalną wymaganą moc generatora, nie wystarczy po prostu dodać liczbę watów wskazaną w charakterystyce każdego podłączonego urządzenia — metoda obliczeniowa jest nieco bardziej skomplikowana. Po pierwsze, należy pamiętać, że w watach zwykle wskazuje się tylko moc czynną różnych urządzeń; ponadto wiele urządzeń elektrycznych prądu przemiennego zużywa moc bierną („bezużyteczną” moc zużywaną przez cewki i kondensatory podczas pracy z tym prądem). Rzeczywiste obciążenie generatora zależy dokładnie od całkowitej mocy (czynnej i biernej), wskazywanej w woltoamperach. Do jej obliczania istnieją specjalne współczynniki i formuły.
Drugi niuans związany jest z zasilaniem ur
...ządzeń, w których prąd rozruchowy (i odpowiednio pobór mocy w momencie włączenia) jest znacznie wyższy niż nominalny — głównie są to urządzenia z silnikami elektrycznymi, takie jak odkurzacze , lodówki, klimatyzatory, elektronarzędzia itp. Moc rozruchową można określić mnożąc moc znamionową przez tzw. współczynnik rozruchu. Dla urządzeń jednego typu jest on mniej więcej taki sam — np. 1,2 — 1,3 dla większości elektronarzędzi, 2 dla mikrofalówki, 3,5 dla klimatyzatora itp.; bardziej szczegółowe dane dostępne są w dedykowanych źródłach. Charakterystyki rozruchowe obciążenia są niezbędne przede wszystkim do oceny wymaganej maksymalnej mocy generatora (patrz niżej) — jednak moc ta nie zawsze jest podana w charakterystyce, często producent podaje tylko moc znamionową agregata. W takich przypadkach przy obliczaniu dla urządzeń o współczynniku rozruchu większym niż 1 warto zastosować moc rozruchową, a nie moc znamionową.
Należy również pamiętać, że w przypadku kilku gniazd określony podział całkowitej mocy na nie może być różny. Ten punkt należy doprecyzować osobno — w szczególności dla określonych typów gniazd (więcej szczegółów patrz „Gniazd 230 V”, „Gniazd 400 V”).Moc maksymalna
Maksymalna moc, jaką może dostarczyć generator.
Ta moc jest nieco wyższa niż znamionowa (patrz wyżej), jednak tryb maksymalnej wydajności może być utrzymany tylko przez bardzo krótki czas — w przeciwnym razie wystąpi przeciążenie. Dlatego praktycznym znaczeniem tej cechy jest głównie opisanie sprawności generatora podczas pracy ze zwiększonymi prądami rozruchowymi.
Przypomnijmy, że niektóre rodzaje urządzeń elektrycznych w momencie rozruchu zużywają kilkakrotnie więcej prądu (i odpowiednio mocy) niż w trybie normalnym; jest to typowe głównie dla urządzeń z silnikami elektrycznymi, takich jak elektronarzędzia, lodówki itp. Jednak zwiększona moc do takiego sprzętu jest potrzebna tylko na krótki czas, normalna praca przywracana jest w ciągu kilku sekund. Możesz oszacować charakterystykę rozruchową, mnożąc moc znamionową przez tak zwany współczynnik rozruchu. W przypadku sprzętu jednego typu jest mniej więcej taki sam (1,2 — 1,3 dla większości elektronarzędzi, 2 dla kuchenki mikrofalowej, 3,5 dla klimatyzatora itp.); bardziej szczegółowe dane dostępne są w dedykowanych źródłach.
W warunkach idealnych maksymalna moc generatora nie powinna być niższa niż całkowita moc szczytowa podłączonego obciążenia — to znaczy moc rozruchowa sprzętu o współczynniku rozruchu większym niż 1 plus moc znamionowa wszystkich innych urządzeń. Zminimalizuje to prawdopodobieństwo przeciążenia.
Model silnika
Nazwa modelu silnika zainstalowanego w generatorze. Znając tę nazwę, możesz w razie potrzeby znaleźć szczegółowe dane dotyczące silnika i wyjaśnić, w jaki sposób spełnia on Twoje wymagania. Ponadto dane modelu mogą być potrzebne do niektórych określonych zadań, w tym konserwacji i napraw.
Należy pamiętać, że współczesne generatory są często wyposażone w
markowe silniki renomowanych producentów: Honda, John Deere, Mitsubishi, Volvo itp. Takie silniki są droższe niż podobne urządzenia mało znanych marek, ale rekompensuje to wyższa jakość i/lub solidność warunków gwarancji, a w wielu przypadkach także łatwość odnalezienia części zamiennych i dodatkowej dokumentacji (takiej jak instrukcje obsługi specjalnej i drobnych napraw).
Pojemność silnika
Pojemność silnika w generatorze benzynowym lub dieslowskim (patrz „Paliwo”). W teorii większa pojemność zwykle oznacza większą moc, ale w praktyce nie jest to takie proste. Po pierwsze, moc właściwa silnie zależy od rodzaju paliwa, a w urządzeniach benzynowych także od rodzaju silnika spalinowego (patrz wyżej). Po drugie, podobne silniki o tej samej mocy mogą mieć różne pojemności i tutaj jest praktyczny punkt: przy tej samej mocy większy silnik zużywa więcej paliwa, ale sam może być tańszy.
Moc
Moc robocza silnika zainstalowanego w generatorze. Tradycyjnie wskazywana jest w koniach mechanicznych; 1 KM w przybliżeniu równa się 735 W.
Od tego wskaźnika zależy bezpośrednio przede wszystkim moc znamionowa generatora (patrz wyżej): w zasadzie nie może być wyższa niż moc silnika, ponadto część mocy silnika jest zużywana na ciepło, tarcie i inne straty. Im mniejsza różnica między tymi mocami, tym wyższa sprawność generatora i tym on jest oszczędniejszy. Co prawda, wysoka sprawność wpływa na koszt, ale ta różnica może się opłacić przy regularnym użytkowaniu ze względu na oszczędność paliwa.
Zużycie paliwa (obciążenie 50%)
Zużycie paliwa przez generator benzynowy lub wysokoprężny, a w przypadku modeli kombinowanych — przy zasilaniu benzyną (patrz "Paliwo").
Mocniejszy silnik nieuchronnie oznacza większe zużycie paliwa; jednak modele o tej samej mocy silnika mogą się pod tym względem różnić. W takich przypadkach warto wziąć pod uwagę, że model o mniejszym zużyciu zazwyczaj kosztuje więcej, ale ta różnica może dość szybko się zwrócić, zwłaszcza przy regularnym użytkowaniu. Ponadto, znając zużycie paliwa i pojemność zbiornika, możesz określić, na jak długo wystarczy jedno tankowanie; jednak w modelach inwerterowych przy częściowym obciążeniu rzeczywisty czas pracy może okazać się zauważalnie wyższy niż teoretyczny, aby uzyskać więcej szczegółów szczegółów patrz „Alternator (prądnica)”.
Łączna liczba gniazd
Całkowita liczba gniazd 230 i/lub 400 V przewidziana w konstrukcji urządzenia.
Liczba ta odpowiada liczbie urządzeń, które można jednocześnie podłączyć do agregatu bez użycia rozgałęźników, przedłużaczy itp. Co więcej, jeśli mówimy o modelu trójfazowym (patrz "Napięcie wyjściowe") z różnymi typami gniazd — liczbę tych i innych należy doprecyzować osobno, gdyż w różnych modelach zestaw może być różny. Na przykład, agregat dla którego zadeklarowana jest obecność
3 gniazd, może mieć 1 gniazdo trójfazowe i 2 gniazda jednofazowe lub 2 gniazda trójfazowe i 1 gniazdo jednofazowe. Ogólnie rzecz biorąc, najskromniejsze współczesne agregaty wyposażone są w
1 gniazdo, natomiast modele z
2 gniazdami są bardziej rozpowszechnione; w najmocniejszych modelach liczba ta może wynosić
4 gniazda i więcej.
Należy dodać, że możliwości podłączenia różnych urządzeń są ograniczone nie tylko liczbą gniazd, ale także mocą znamionową agregatu prądotwórczego (szczegóły powyżej).
Gniazda 230 V
Liczba gniazd o napięciu 230 V przewidziana w konstrukcji generatora, a także rodzaj złączy stosowanych w tych gniazdach.
Rodzaj złącza w tym przypadku jest wskazywany według maksymalnego prądu dozwolonego dla gniazda — na przykład „2 szt. na 16 A”. Najpopularniejsze opcje dla gniazd 230 V to
16 A,
32 A i 63 A. Podkreślamy, że ampery w tym oznaczeniu nie są rzeczywistym prądem, jaki może wydać generator, ale własnym ograniczeniem gniazda; rzeczywiste natężenie prądu jest zwykle zauważalnie niższe. Mówiąc prościej, jeśli na przykład generator ma gniazdo 32 A, prąd wyjściowy na nim nie osiągnie 32 A; konkretna liczba amperów będzie zależeć od mocy znamionowej i maksymalnej urządzenia (patrz powyżej). Jeśli więc dla naszego przykładu przyjmiemy moc znamionową 5 kW i moc maksymalną 6 kW, to do gniazda 230 V taki generator może dać nie więcej niż 5 kW / 230 V = 22,7 A nominalnie i 6 kW / 230 V = 27, 3 A szczytowo. Jeśli moc trzeba podzielić na kilka gniazd, to odpowiednio będzie jeszcze mniej.
Jeśli chodzi o poszczególne typy złączy, to im wyższy prąd dopuszczalny dla gniazda, tym wyższe wymagania dotyczące jego niezawodności i jakości ochrony. W związku z tym z reguły do gniazd o większej mocy można podłączać wtyczki o mniejszej mocy (bezpośrednio lub przez przejściówkę), ale nie odwrotnie. Jeśli gniazd jest kilka, to ze względu na ich rodzaj można z całą pewnością oszacować rozkład między n
...imi całej mocy generatora: między dwoma identycznymi złączami moc ta jest zwykle dzielona równo, a na gniazdo o większej liczbie amperów więcej przypada i mocy. Jednak szczegółowe informacje w tej sprawie należy wyjaśniać w każdym przypadku oddzielnie; warto również rozważyć ewentualne gniazda 400 V (patrz poniżej).Poziom ochrony
Poziom ochrony zapewniany przez obudowę generatora, a mianowicie stopień ochrony „wypełnienia” przed kurzem, wilgocią i ciałami obcymi. Jest oznaczony przez standard IP dwiema liczbami, z których jedna odpowiada ochronie przed ciałami stałymi i kurzem, druga — przed wilgocią, na przykład IP24.
Zgodnie z poziomem ochrony przed kurzem (pierwsza cyfra) we współczesnych generatorach występują następujące wartości:
2 — ochrona przed przedmiotami o średnicy większej niż 12,5 mm (palce itp.);
3 — przed przedmiotami o średnicy powyżej 2,5 mm (większość instrumentów);
4 — przed przedmiotami o średnicy większej niż 1 mm (prawie wszystkie narzędzia, większość przewodów);
5 — pyłoszczelność (całkowita ochrona przed kontaktem; kurz może dostać się do środka, ale nie ma wpływu na działanie urządzenia).
Poziomy ochrony przed wilgocią mogą być następujące:
1 — ochrona przed pionowo spadającymi kroplami wody;
2 — przed kroplami wody z odchyleniem do 15° od pionowej osi urządzenia (deszcz);
3 — przed kroplami wody z odchyleniem do 60° od pionowej osi urządzenia (deszcz i wiatr);
4 — przed rozbryzgami z dowolnego kierunku (deszcz z silnym wiatrem);
Ogólnie rzecz biorąc, do użytku w pomieszczeniach wskaźnik ten nie odgrywa kluczowej roli, ale na ulicy i w podobnych warunkach (na przykład na placu budowy) należy upewnić się, że wybrany generator jest wystarczająco chroniony — lub zapewnić dodatkową ochronę.