Moc użyteczna
Moc dostarczana przez młotowiertarkę bezpośrednio na świder lub inny osprzęt roboczy. Wskaźnik ten jest nieuchronnie niższy niż pobór mocy (patrz poniżej) ze względu na straty energii w mechanizmach narzędzia.
Ogólnie rzecz biorąc, wyższa moc użyteczna oznacza większą wydajność i skuteczność; natomiast drugą stroną medalu jest zwiększenie ceny, energochłonności, wymiarów i masy (zresztą to ostatnie nie zawsze jest wadą młotowiertarek). Ponadto należy pamiętać, że narzędzia o podobnych wartościach mocy użytkowej mogą różnić się stosunkiem prędkości dłutowania do siły udarów: przypomnijmy, że wyższa częstotliwość oznacza mniej energii na każdy udar i odwrotnie. Tak duże liczby w tym punkcie mogą oznaczać zarówno wysoką wydajność podczas pracy z twardymi, niepodatnymi materiałami, jak i dobrą wydajność przy stosunkowo prostych zadaniach; te cechy należy wyjaśnić osobno.
Ponadto, na podstawie stosunku mocy użytecznej i zużytej, można ocenić sprawność narzędzia pod względem zużycia energii: im niższy pobór mocy (przy tej samej mocy użytecznej), tym bardziej wydajny jest dany model. Minusem efektywności energetycznej jest często zwiększony koszt, jednak może się to dość szybko zwrócić dzięki oszczędzaniu energii elektrycznej - zwłaszcza jeśli musisz dużo i często pracować.
Moc
Moc znamionowa pobierana przez młotowiertarkę podczas pracy. Z reguły moc znamionową przyjmuje się jako maksymalny pobór mocy w zwykłym trybie pracy.
Ogólnie rzecz biorąc, im wyższy wskaźnik ten, tym cięższa i wydajniejsza młotowiertarka, tym bardziej zaawansowana jest jej specyfikacja robocza. Z drugiej strony pobór mocy elektrycznej przez takie narzędzia jest wysokie. Ponadto należy pamiętać, że przy tym samym poborze mocy rzeczywisty zestaw indywidualnych cech może różnić się w zależności od narzędzia. Na przykład częstotliwość i energia udarów są odwrotnie proporcjonalne, a przy tym samym poborze mocy wyższa częstotliwość zwykle oznacza mniejszą energię udaru. Tak więc, za pomocą tego parametru należy oceniać tylko ogólny poziom narzędzia; w celu dokładnego doboru do konkretnych zadań należy zwrócić uwagę na bardziej szczegółowe cechy.
Zwracamy również uwagę, że dane dotyczące zużycia energii mogą być przydatne w przypadku niektórych zadań związanych z organizacją zasilania – np. gdy obiekt budowlany jest zasilany przez autonomiczny generator i trzeba oszacować obciążenie tego źródła energii.
Energia udaru
Energia przekazywana przez młotowiertarkę na obrabiany materiał podczas udaru; im wyższy wskaźnik ten, tym silniejszy i mocniejszy każdy pojedynczy udar.
Przede wszystkim należy zauważyć, że energia udarów jest bezpośrednio związana z ich częstotliwością: wzrost częstotliwości prowadzi do spadku energii. Dlatego w przypadku modeli, w których można regulować liczbę udarów, w tym punkcie zwykle podaje się maksymalną energię, osiągniętą przy minimalnej prędkości roboczej.
Ogólnie rzecz biorąc, wyższa energia udaru poprawia wydajność podczas pracy z twardymi, niepodatnymi materiałami, jednak wymaga większej mocy silnika (szczególnie w połączeniu z wysoką częstotliwością). Dlatego warto wybierać według tego parametru biorąc pod uwagę konkretne zadania. Tak więc, do okresowego użytku w życiu codziennym wystarcza energia 2 J lub mniej, w przypadku prac remontowych w domu o średniej intensywności pożądane jest co najmniej 3 J; moc
4 J lub więcej jest już uważana za wysoką; a w niektórych młotowiertarkach klasy przemysłowej liczba ta może sięgać 30 J.
Liczba udarów
Liczba uderzeń na minutę zapewniana przez młotowiertarkę. W przypadku modeli, w których można regulować częstotliwość udarów, w danym punkcie określa się cały zakres regulacji, na przykład „1600 - 3000”.
Wysoka częstotliwość udarów z jednej strony zwiększa produktywność narzędzia i może znacznie skrócić czas pracy. Z drugiej strony, przy tej samej mocy silnika, wzrost liczby udarów na minutę prowadzi do spadku energii każdego udaru. Dlatego wśród ciężkich urządzeń produkcyjnych często występuje niska częstotliwość - do 2500 udarów na minutę, a nawet mniej. A możliwość regulacji częstotliwości udarów pozwala dostosować pracę młotowiertarki do konkretnej sytuacji, w zależności od tego, co jest ważniejsze – wydajność czy umiejętność radzenia sobie z twardym, upartym materiałem. Na przykład w przypadku starej kruszącej się cegły można ustawić wyższą prędkość, a przy pracy z kamieniem lub gęstym betonem lepiej zmniejszyć częstotliwość udarów, kierując moc silnika tak, aby zwiększyć energię każdego udaru.
Reasumując można powiedzieć: wybierając młotowiertarkę, należy skupić się zarówno na liczbie udarów, jak i ich energii. Szczegółowe zalecenia na ten temat dla konkretnych sytuacji można znaleźć w specjalnych źródłach.
Znamionowe obroty obciążenia
Obroty silnika udarowego przy znamionowym obciążeniu narzędzia.
Za obciążenie nominalne uważa się zwykle największe obciążenie, jakie narzędzie jest w stanie wytrzymać bez awarii podczas wystarczająco długiej pracy. W każdym razie parametr ten jest podawany stosunkowo rzadko, ponieważ prędkość biegu jałowego jest tradycyjnie uważana za główny parametr roboczy (patrz „Liczba obrotów” powyżej). Jednak dane dotyczące prędkości pod obciążeniem pozwalają nam również ocenić niektóre możliwości młotowiertarki. Zatem wyższa prędkość znamionowa obciążenia (przy tej samej prędkości biegu jałowego) w praktyce oznacza co najmniej wyższą produktywność, a w wielu przypadkach także zdolność do bardziej efektywnego radzenia sobie z trudnymi zadaniami.
Maks. moment obrotowy
Maksymalny moment obrotowy osiągany przez młotowiertarkę.
Bez wchodzenia w szczegóły, moment obrotowy można opisać jako siłę roboczą narzędzia. Przy wierceniu z udarem, wskaźnik ten nie ma fundamentalnego znaczenia – przypomnijmy, że obrót nasadki w tym trybie pełni funkcję pomocniczą, a kluczowymi parametrami są częstotliwość i energia udarów. Natomiast przy tradycyjnym wierceniu, bez udaru, moment obrotowy bezpośrednio określa wydajność narzędzia. Im jest wyższy, tym silniejszy jest wpływ na obrabiany materiał i tym większą średnicę wiercenia może zapewnić ten model. Jednak narzędzia o podobnych ograniczeniach średnicy wiercenia mogą różnić się momentem obrotowym; w takich przypadkach należy założyć, że większy nakład pracy wymaga mocniejszego silnika i wpływa na koszt, jednak przyczynia się do niezawodności i zapewnia dodatkową gwarancję w przypadku niektórych nietypowych sytuacji.
Maks. średnica wiercenia koronką
Maksymalna średnica narzędzia, która może być używana z młotowiertarką podczas wiercenia koronką wklęsłą. Koronki służą do wykonywania otworów o dużej średnicy (od 40 mm) w twardych materiałach, takich jak żelbet i kamień. Aby uzyskać szczegółowe informacje na temat maksymalnej średnicy, patrz „Maksymalna średnica wiercenia w drewnie”.