Powłoka ekranu
—
Błyszcząca. Błyszcząca powierzchnia poprawia ogólną jakość obrazu: przy pozostałych warunkach równych obraz na takim ekranie wygląda jaśniej i bardziej kolorowo niż na matowym. Z drugiej strony na takiej powierzchni bardzo zauważalne są zanieczyszczenia, a w jasnym otoczeniu pojawia się na niej dużo odblasków, które mogą mocno przeszkadzać w oglądaniu. Dlatego zamiast klasycznego połysku w laptopach coraz częściej stosuje się antyrefleksyjną wersję takiej powłoki (patrz poniżej). Niemniej jednak ta opcja nadal nie traci na popularności: kosztuje nieco mniej niż powłoka antyrefleksyjna, a przy miękkim, stosunkowo słabym oświetleniu może nawet zapewnić przyjemniejszy dla oka obraz.
—
Matowa. Matowa powłoka jest niedroga i nie powoduje odblasków, nawet przy dość jasnym oświetleniu. Z drugiej strony obraz na takim ekranie okazuje się zauważalnie ciemniejszy niż na podobnym błyszczącym wyświetlaczu. Jednak ten szczegół można skompensować różnymi rozwiązaniami konstrukcyjnymi (przede wszystkim dobrym zapasem jasności); więc tę opcję można znaleźć we wszystkich kategoriach nowoczesnych laptopów - od niedrogich modeli do pracy z dokumentami po najlepsze konfiguracje do gier.
—
Błyszcząca (antyrefleksyjna). Odmiana opisanej powyżej błyszczącej powłoki, mająca na celu ograniczenie odblasków z zewnętrznych źródeł światła. Takie ekrany naprawdę odbijają zauważalnie
...mniej niż tradycyjne błyszczące (lub nawet nie dają odblasków); jednocześnie pod względem jakości obrazu są co najmniej lepsze od matowych. Więc to właśnie ten rodzaj powłoki jest obecnie najbardziej popularny.Jasność
Maksymalna jasność, jaką może zapewnić ekran laptopa.
Im jaśniejsze światło otoczenia, tym jaśniejszy musi być ekran laptopa, w przeciwnym razie obraz na nim może być trudny do odczytania. I odwrotnie, przy słabym świetle otoczenia wysoka jasność nie jest konieczna - powoduje duże obciążenie oczu (jednak w tym przypadku wszystkie współczesne laptopy są wyposażone w kontrolę jasności). W związku z tym im wyższy wskaźnik ten, tym bardziej uniwersalny jest ekran, tym szerszy jest zakres warunków, w których można go efektywnie używać. Wadą tych korzyści jest wzrost ceny i zużycia energii.
Jeśli chodzi o konkretne wartości, wiele współczesnych laptopów ma jasność
250 – 300 nitów lub nawet
mniej. To wystarcza do pracy przy sztucznym oświetleniu o średniej intensywności, lecz przy jasnym naturalnym świetle mogą już wystąpić problemy z widocznością. Do użytku przy słonecznej pogodzie (szczególnie na zewnątrz) pożądany jest zapas jasności co najmniej
300 – 350 nitów. A w najbardziej zaawansowanych modelach parametr ten może wynosić
350 – 400 nitów,
401 – 500 nitów a nawet
ponad 500 nitów.
Kontrast
Kontrast ekranu zainstalowanego w laptopie.
Kontrast to największa różnica w jasności między najjaśniejszą bielą a najciemniejszą czernią, jaką można uzyskać na jednym ekranie. Jest zapisywany jako współczynnik, na przykład rzędu 560:1; przy czym im wyższa pierwsza liczba, tym wyższy kontrast, tym bardziej zaawansowany jest ekran i tym lepszą jakość obrazu można na nim osiągnąć. Jest to szczególnie zauważalne przy dużych różnicach w jasności w obrębie jednej klatki: przy niskim kontraście pojedyncze szczegóły znajdujące się w najciemniejszych lub najjaśniejszych obszarach obrazu mogą zostać utracone, zwiększenie kontrastu pozwala w pewnym stopniu wyeliminować to zjawisko. Wadą tych korzyści jest zwiększony koszt.
Osobno należy podkreślić, że w tym przypadku wskazany jest tylko kontrast statyczny - różnica osiągana w ramach jednej klatki podczas normalnej pracy, przy stałej jasności i bez użycia specjalnych technologii. W celach reklamowych niektórzy producenci mogą również podawać dane o tzw. kontraście dynamicznym - można go mierzyć w bardzo imponujących liczbach (siedmiocyfrowych lub więcej). Warto jednak skupić się przede wszystkim na statycznym kontraście - to podstawowa cecha każdego wyświetlacza.
Jeśli chodzi o konkretne wartości, nawet na najbardziej zaawansowanych ekranach wartość ta nie przekracza 2000:1. Ogólnie rzecz biorąc, współczesne laptopy mają raczej niski kontrast - zakłada się, że do zadań wymagających bardziej zaawansowa...nych właściwości obrazu rozsądniej jest użyć ekranu zewnętrznego (monitora lub telewizora).
Przestrzeń barw (sRGB)
Przestrzeń barw matrycy laptopa zgodnie z modelem przestrzeni barw Rec.709 lub sRGB.
Przestrzeń barw opisuje zakres barw, który można wyświetlić na ekranie. Podaje się w procentach, ale nie w odniesieniu do całego widma widocznych barw, ale w odniesieniu do warunkowej przestrzeni barw (modelu przestrzeni barw). Wynika to z faktu, że żaden nowoczesny ekran nie jest w stanie wyświetlić wszystkich barw widocznych dla ludzi. Niemniej jednak im większa przestrzeń barw, tym szersze możliwości ekranu, tym lepsze jest jego odwzorowanie barw.
W szczególności sRGB i Rec. 709 to najpopularniejsze z dzisiejszych modeli przestrzeni barw; mają ten sam zakres i różnią się tylko obszarem zastosowania (sRGB używa się w komputerach, Rec. 709 - w HDTV). Dlatego im bliższa
przestrzeń barw jest 100%, tym dokładniej barwy na ekranie będą odpowiadać barwom, które zostały pierwotnie wymyślone przez twórcę filmu, gry itp. Jednocześnie należy pamiętać, że taka dokładność nie jest szczególnie potrzebna w codziennym użytkowaniu - ma kluczowe znaczenie tylko do profesjonalnej pracy z kolorem; i nawet w takich przypadkach wygodniej jest kupić osobny monitor z szeroką przestrzenią barw do laptopa niż szukać laptopa z wysokiej jakości (i odpowiednio drogą) matrycą.
Przestrzeń barw (Adobe RGB)
Przestrzeń barw matrycy laptopa oparta na modelu przestrzeni barw Adobe RGB.
Przestrzeń barw opisuje zakres barw, który można wyświetlić na ekranie. Podaje się w procentach, ale nie w odniesieniu do całego widma widocznych barw, ale w odniesieniu do warunkowej przestrzeni barw (modelu przestrzeni barw). Wynika to z faktu, że żaden nowoczesny ekran nie jest w stanie wyświetlić wszystkich barw widocznych dla ludzi. Niemniej jednak im większa przestrzeń barw, tym szersze możliwości ekranu, tym lepsze jest jego odwzorowanie barw.
Model przestrzeni barw Adobe RGB został pierwotnie opracowany do użytku w druku; zakres barw, które obejmuje, odpowiada możliwościom profesjonalnego sprzętu poligraficznego. Dlatego w teorii obszerne pokrycie według tego modelu będzie przydatne dla tych, którzy zajmują się projektowaniem i układem wysokiej jakości produktów drukowanych. Co prawda, ekrany laptopów w większości mają bardzo skromne wartości Adobe RGB, rzadko przekraczające 74%; niemniej jednak można znaleźć wysokiej klasy modele, w których liczba ta
zbliża się do 100%. Oczywiście koszt takich laptopów będzie również odpowiedni; dlatego warto zwrócić na nie uwagę przede wszystkim wtedy, gdy kluczowa jest umiejętność pracy z kolorem „w biegu”. Jeśli ma się to odbywać w jednym miejscu, bardziej uzasadniony może być zakup osobnego monitora z rozbudowaną przestrzenią barw (zwłaszcza, że monitor o takich specyfikacjach jest łatwiejszy do
...znalezienia niż laptop).Test Passmark CPU Mark
Wynik pokazany przez procesor laptopa w teście Passmark CPU Mark.
Passmark CPU Mark to kompleksowy test, bardziej szczegółowy i niezawodny niż popularny 3DMark06 (patrz wyżej). Sprawdza nie tylko możliwości gier procesora, ale także jego wydajność w innych trybach, na podstawie czego wyświetla ogólny wynik; zgodnie z tym wynikiem można dość rzetelnie ocenić procesor jako całość (im więcej punktów, tym wyższa wydajność).
Wydzielanie ciepła (GPU TDP)
Ilość ciepła generowanego przez procesor graficzny (GPU) podczas normalnej pracy. TDP wyrażane jest w watach. Pozwala ocenić właściwości termiczne laptopa i określić jego potencjał do pracy z dużymi obciążeniami graficznymi. Im wyższa wartość TDP procesora graficznego, tym więcej energii pobiera procesor graficzny, co może wymagać wydajniejszego układu chłodzenia, aby uniknąć przegrzania i zapewnić stabilną pracę urządzenia. Laptopy z większym odprowadzaniem ciepła przez procesor graficzny są lepiej dostosowane dla graczy lub profesjonalistów zajmujących się grafiką i produkcją wideo.
Interfejs dysku SSD M.2
Interfejs podłączenia, używany przez moduł SSD ze złączem M.2 zainstalowanym w laptopie (patrz „Typ dysku”).
Jedną z cech złącza M.2 i dysków z takim złączem jest to, że mogą korzystać z dwóch różnych interfejsów połączeniowych: PCI-E (w tej czy innej odmianie) lub SATA. Warto podkreślić, że ten punkt wskazuje dane modułu SSD; w samym złączu mogą być zapewnione inne opcje interfejsu, w tym bardziej zaawansowane - patrz „Interfejs łącza M.2” (na przykład dysk ze złączem
PCI-E 3.0 można umieścić w gnieździe obsługującym również szybsze złącze
PCI-E 4.0). Jednak w każdym przypadku złącze połączeniowe zwykle pozwala realizować wszystkie możliwości zainstalowanego dysku; więc ta pozycja pozwala dość rzetelnie ocenić możliwości standardowego modułu M.2.
Jeśli chodzi o konkretne interfejsy, obecnie można znaleźć głównie następujące warianty:
- SATA 3. Interfejs SATA został pierwotnie stworzony dla tradycyjnych dysków twardych. Trzecia wersja tego interfejsu jest najnowsza; zapewnia prędkość transmisji danych do 600 MB/s. To znacznie mniej niż ma PCI-E i ogólnie bardzo mało jak na standardy dysków SSD. Dlatego połączenie M.2 za pomocą SATA jest typowe głównie dla niedrogich modułów poziomu podstawowego. Jednak nawet takie nośniki są generalnie szybsze niż większość dysków twardych.
- PCI-E. Uniwersalny interfejs do podłączania wewnętrznych urządzeń peryferyjnych. Zapewnia g
...eneralnie większe prędkości niż SATA, dzięki czemu lepiej nadaje się do modułów SSD: teoretycznie PCI-E pozwala dyskom SSD, nawet najszybszym, na osiągnięcie pełnego potencjału. W praktyce obsługiwana prędkość transmisji danych może być różna - w zależności od wersji interfejsu i liczby linii (kanałów transmisji danych). Oto warianty najbardziej odpowiednie dla współczesnych laptopów:
- PCI-E 3.0 2x. Połączenie za pomocą 2 linii PCI-E w wersji 3.0. Ta wersja zapewnia prędkość około 1 GB/s na linię; w związku z tym obydwie linie dają maksymalnie nieco poniżej 2 GB/s.
- PCI-E 3.0 4x. Połączenie za pomocą 4 linii PCI-E w wersji 3.0. Zapewnia maksymalną prędkość około 4 GB/s.
- PCI-E 4.0 4x. Połączenie za pomocą 4 linii PCI-E w wersji 4.0. W tej wersji przepustowość w porównaniu do PCI-E 3.0 została podwojona - tym samym 4 linie dają maksymalną prędkość około 8 MB/s.
Warto zaznaczyć, że w przypadku złączy M.2 różne odmiany PCI-E są zwykle ze sobą dość kompatybilne - chyba że prędkość połączenia podczas pracy z obcym złączem będzie ograniczona możliwościami najwolniejszego komponentu. Na przykład podczas podłączenia modułu SSD PCI-E 3.0 4x do gniazda PCI-E 3.0 2x prędkość ta będzie odpowiadać możliwościom złącza, a podczas podłączenia do PCI-E 4.0 4x - możliwościom dysku.Dodatkowy slot 2.5"
Obecność w laptopie dodatkowego slotu na wewnętrzny dysk formatu 2.5 cala.
Z reguły aby zamontować dysk w takim slocie lub go wymontować, nie trzeba rozbierać całego laptopa - wystarczy zdjąć pokrywę lub wyjąć zaślepkę. Jeśli chodzi o 2.5", jest to tradycyjny format dla dysków twardych (HDD) do laptopów, chociaż inne typy nośników (SSD i SSHD - patrz „Typ nośnika") mogą również być produkowane w tym formacie. Do podłączenia dysków 2.5" zwykle korzystano ze złącza SATA - nie jest ono tak szybkie, jak w nowszych standardach, takich jak M.2 PCI-E (patrz „Interfejs dysku”), jednak jest tańsze, a do dysku twardego to złącze zupełnie wystarczy.
Zatem
obecność dodatkowego slotu 2.5" pozwala szybko i niedrogo zwiększyć całkowitą pojemność dysków do laptopów.