Діагональ екрана
Розмір дисплея ноутбука на діагоналі.
Чим більший екран — тим зручніший ноутбук для перегляду кіно у високій роздільній здатності, сучасних ігор, роботи з великоформатними графічними матеріалами тощо. Великі екрани особливо важливі для мультимедійних та ігрових моделей. З іншого боку, діагональ дисплея безпосередньо позначається на габаритах та вартості всього пристрою. Отже, якщо ключове значення має зручність у перенесенні — має сенс звернути увагу на порівняно невеликі рішення; тим більше, що більшість сучасних лептопів мають відеовиходи на зразок HDMI або DisplayPort і допускають підключення великоформатних зовнішніх моніторів.
У світлі цього фактичним максимумом для ноутбуків в наш час є
17 "(17,3"); однак
більші пристрої (18") знову почали з'являтися на початок 2023 року. Стандартним варіантом для ноутбуків загального призначення є
15"(15,6"), рідше
16", діагональ в
13"(13,3") або
14" вважається невеликий за мірками такої техніки.А екрани менших розмірів можна зустріти переважно в специфічних компактних різновидах лептопів - ультрабуках, 2 в 1, трансформерах, нетбуках; серед таких пристроїв є рішення на
12",
11" і навіть
10" і менше.
Тип матриці
Технологія, за якою виготовлена матриця ноутбука.
Найбільшого поширення в наш час отримали матриці типу
TN+film,
IPS і
*VA; рідше зустрічаються екрани типу
OLED,
AMOLED,
QLED,
miniLED, а також більш специфічні рішення на зразок LTPS або IGZO. Ось детальніший опис всіх цих варіантів:
— TN-film. Найстаріша, найпростіша і найбільш недорога із застосовуваних у наш час технологій. Ключовими перевагами дисплеїв цього типу є невисока вартість і відмінний час відгуку. З іншого боку, подібні матриці не характеризуються високою якістю зображення: яскравість, достовірність передачі кольору і кути огляду у екранів TN-film знаходяться на середньому рівні. Цих показників цілком достатньо для роботи з документами, вебсерфінгу, більшості ігор тощо однак для серйозніших задач, що потребують якісної і достовірної картинки (наприклад, дизайну або кольорокорекції фото/відео) такі екрани практично непридатні. У світлі цього матриці TN-film в наш час зустрічаються порівняно нечасто, в основному серед бюджетних ноутбуків; більш прогресивні пристрої оснащуються якіснішими екранами, найчастіше IPS.
— IPS (In-Plane Switching). Найпопулярніший тип матриці для ноутбуків середнього і топового цінового діапазону; втім,
...все частіше зустрічається в бюджетних моделях, а для трансформерів і пристроїв «2-в-1» (див. «Тип») і взагалі є практично стандартним варіантом. Екрани цього типу помітно перевершують TN-film за якістю «картинки»: вони дають яскраве, достовірне і насичене зображення, яке майже не змінюється при зміні кута огляду. Крім того, дана технологія дає змогу передбачити широке колірне охоплення за різними спеціальними стандартами (див. нижче) і підходить для створення дисплеїв з прогресивними особливостями — на зразок підтримки HDR або сертифікації Pantone / CalMAN (також див. нижче). Першопочатково матриці IPS відрізнялися високою вартістю і мали низьку швидкість відгуку; однак у наш час використовуються різні модифікації цієї технології, в яких ці недоліки повністю або частково компенсовані. При цьому різні модифікації можуть розрізнятися за практичними характеристиками: наприклад, одні створені в розрахунку на максимальну достовірність картинки, інші характеризуються доступною вартістю тощо. Так що фактичні характеристики IPS-екрану перед покупкою не завадить уточнити окремо — особливо якщо ноутбук планується використовувати для специфічних задач, де якість зображення є критичною.
— *VA. Різні модифікації матриць типу «Vertical Alignment»: MVA, PVA, Super PVA, ASVA тощо. Відмінності між цими технологіями полягають переважно у назві і фірмі-виробнику. Першопочатково матриці цього типу були розроблені як компромісний варіант між IPS (високоякісною, але дорогою і повільною) і TN-film (швидкою, недорогою, але скромною за якістю зображення). У результаті екрани *VA вийшли доступнішими, ніж IPS, і більш прогресивними, ніж TN-film — вони мають непогану кольоропередачу, глибокий чорний колір і великі кути огляду. Водночас варто відзначити, що колірний баланс зображення на такому дисплеї дещо змінюється при зміні кута огляду. Це ускладнює застосування матриць *VA при професійній роботі з кольором. В цілому даний варіант розрахований в основному на тих, кому не потрібно ідеальної точності кольоропередачі і водночас хочеться бачити яскраве і барвисте зображення.
— OLED. Матриці на основі так званих органічних світлодіодів. Ключовою особливістю подібних дисплеїв є те, що в них кожен піксель сам по собі є джерелом світла (на відміну від класичних РК-екранів, в яких підсвічування виконане окремо). Подібний принцип конструкції, у поєднанні з низкою інших рішень, забезпечує відмінну яскравість, контрастність і кольоропередачу, насичений чорний колір, максимально широкі кути огляду і невелику товщину самих екранів. З іншого боку, ноутбучні OLED-матриці в більшості своїй виходять досить дорогими і «ненажерливими» в плані споживання енергії, а зношуються вони нерівномірно: чим частіше і яскравіше світиться піксель — тим швидше він втрачає свої робочі властивості (втім, це явище стає помітним лише після кількох років інтенсивної експлуатації). Крім того, з низки причин подібні екрани вважаються такими, що слабо придатні для ігрового застосування. У світлі всього цього матриці даного типу в наш час зустрічаються рідко, переважно в окремих висококласних ноутбуках, що призначені для професійної роботи з кольором і мають відповідні особливості на зразок підтримки HDR, широкого колірного охоплення та/або сертифікації Pantone / CalMAN (див. нижче).
– AMOLED. Різновид матриць на органічних світлодіодах, створений компанією Samsung (втім, застосовується і іншими виробниками). З основних особливостей схожий з іншими видами OLED-матриць (див. вище): з одного боку, дає змогу досягти відмінної якості зображення, з іншого — обходиться недешево і зношується нерівномірно. Водночас AMOLED-екрани мають ще прогресивніші показники кольоропередачі у поєднанні з кращою оптимізацією енергоспоживання. А слабка поширеність даної технології зумовлена в основному тим, що першопочатково вона була створена для смартфонів і в ноутбуках стала використовуватися лише нещодавно (з 2020 року).
– MiniLED. Система підсвічування екрану на підкладці із мініатюрних світлодіодів розміром близько 100-200 мікрон (мкм). На одній і тій же площині дисплея вдалося збільшити кількість світлодіодів у кілька разів, а їх масив розміщується безпосередньо за самою матрицею. Головною перевагою технології miniLED можна назвати велику кількість локальних зон затемнення, що у сумі дає покращену яскравість, контрастність та більш насичені кольори з глибоким чорним. Екрани miniLED розкривають потенціал технології розширеного динамічного діапазону зображення (HDR), підходять графічним дизайнерам та розробникам цифрового контенту.
— QLED. Матриці на «квантових точках» з переробленою системою LED-підсвічування. Зокрема, вона передбачає заміну багатошарових кольорофільтрів на особливе тонкоплівкове покриття з наночастинок. Замість традиційних білих світлодіодів в QLED-панелях використовуються сині. Як результат, комплекс конструктивних нововведень дає змогу досягти більш високого порогу яскравості, насиченості кольорів, поліпшення якості передачі кольору в цілому одночасно зі зменшенням товщини екрану і зниженням енергоспоживання. Зворотний бік медалі QLED-матриць – недешева вартість.
— PLS. Тип матриці, розроблений як альтернатива описаним вище IPS і, за деякими даними, є однією з її модифікацій. Такі матриці також характеризуються високою якістю кольоропередачі і хорошою яскравістю; крім того, з переваг PLS можна відзначити хорошу придатність для екранів високої роздільної здатності (завдяки високій щільності пікселів), а також меншу вартість, ніж у більшості модифікацій IPS, і низьке енергоспоживання. Водночас швидкість відгуку у таких екранів не дуже висока.
— LTPS. Прогресивний різновид TFT-матриць, створений на основі так званого. низькотемпературного полікристалічного кремнію. Такі матриці мають високу якість кольоропередачі, до того ж добре підходять для екранів з високою щільністю пікселів — іншими словами, на їх основі можна створювати невеликі дисплеї з дуже високою роздільною здатністю. Ще одна перевага полягає в тому, що частину управляючої електроніки можна вбудувати прямо в матрицю, зменшивши загальну товщину екрану. З іншого боку, матриці LTPS складні у виробництві і дорогі, а тому зустрічаються в основному в ноутбуках преміумкласу.
— IGZO. Технологія побудови РК-дисплеїв, що використовує напівпровідниковий матеріал на основі оксиду індію, галію і цинку (на відміну від більш традиційних варіантів, заснованих на аморфному кремнії). Подібна технологія забезпечує малий час відгуку, низьке енергоспоживання і дуже високу якість кольоропередачі; крім того, вона дає змогу досягати високої щільності пікселів, завдяки чому добре підходить для екранів надвисокої роздільної здатності. Втім, поки що подібні дисплеї в ноутбуках зустрічаються вкрай рідко. Це пояснюється як високою вартістю, так і тим, що у виробництві матриць IGZO використовуються досить рідкісні метали, що ускладнює великомасштабне виробництво.Роздільна здатність дисплея
Роздільна здатність екрану, встановленого в ноутбуці — тобто розмір екрану в пікселях по горизонталі і вертикалі.
Більш висока роздільної здатності, з одного боку, дає більш чітке, деталізоване зображення; з іншого — збільшує вартість лептопа. Останнє пов'язано не тільки з вартістю самих дисплеїв, але і з тим, що для ефективної роботи на високих роздільних здатностях потрібна відповідна начинка (насамперед — відеокарта). Це особливо актуально в іграх; так що якщо ви шукаєте ноутбук з екраном високої роздільної здатності, здатний ефективно «тягнути» сучасні ігри — варто звернути увагу не тільки на характеристики дисплея, але і на інші дані (тип і параметри відеокарти, результати тестів, здатність роботи з тими чи іншими іграми — про все див. нижче). З іншого боку, якщо пристрій планується використовувати для нескладних завдань на зразок роботи з документами, Інтернет-серфінгу та перегляду відео — на параметри «начинки» можна не звертати особливої уваги: вони в будь-якому випадку підбираються так, щоб ноутбук гарантовано міг впоратися з такими завданнями на повній роздільній здатності «рідного» екрану.
Що стосується конкретних цифр, то актуальні на сьогодні варіанти роздільної здатності можна умовно розділити на 4 групи:
HD (720),
Full HD (1080),
Quad HD і
UltraHD 4K. Ось їх більш детальний опис:
— HD
...(720). У дану категорію відносять всі дисплеї, що мають по вертикалі розмір менше 1080 пікселів. Найбільш популярний варіант HD-роздільной здатності в сучасних ноутбуках — 1366х768; в пристроях крупніше 15,6" нерідко зустрічається також 1600х900. Інші значення досить екзотичні і використовуються рідко. Загалом екрани даного стандарту в наш час характерні переважно для лептопів початкового рівня.
— Full HD (1080). Першопочатково стандарт Full HD передбачає розмір кадру 1920х1080, і саме така роздільна здатність найчастіше використовується в ноутбучних екранах з цієї категорії. Однак, крім цього, до даного формату відносять також інші варіанти роздільних здатностей, де розмір по вертикалі становить не менш 1080 пікселів, проте не дотягує до 1440 пікселів. В якості прикладів можна навести 1920х1200 і 2560х1080. Загалом Full HD дисплеї забезпечують непогане співвідношення між вартістю, якістю зображення і вимогами до апаратної частини лептопа. Завдяки цьому в наш час вони надзвичайно широко поширені; матриці цього стандарту можна зустріти навіть в бюджетних пристроях, хоча переважно вони застосовуються в більш прогресивній техніці.
— Quad HD. Перехідний варіант між популярним Full HD 1080 (див. вище) і висококласним і дорогим UltraHD 4K. Розмір таких екранів по вертикалі починається від 1440 пікселів і може досягати 2000 пікселів. Зазначимо, що роздільні здатності QuadHD особливо популярні в ноутбуках Apple; найчастіше такі пристрої мають екрани 2560х1600, хоча зустрічаються й інші варіанти.
— UltraHD 4K. Найбільш прогресивний стандарт із застосовуваних у сучасних ноутбуках. Розмір таких екранів по вертикалі становить не менш 2160 точок (до 2400 в окремих конфігураціях); класична роздільна здатність сучасної UltraHD-матриці — 3840х2160, але зустрічаються і інші значення. У будь-якому разі 4K-дисплей дає змогу забезпечити високу якість зображення, але і коштує відповідно — в тому числі через відповідні вимоги до графічного адаптера; крім того, для роботи з високими роздільними здатностями буває зручніше підключити до ноутбука зовнішній монітор. У світлі цього подібні екрани використовуються відносно рідко, причому переважно серед лептопів преміумкласу.Яскравість
Максимальна яскравість, яку здатен забезпечити екран ноутбука.
Чим яскравіше навколишнє освітлення — тим яскравіше повинен бути і екран ноутбука, інакше зображення на ньому може виявитися складним для читання. І навпаки: при поганому зовнішньому освітленні висока яскравість зайва — вона сильно навантажує очі (втім, на цей випадок сучасні ноутбуки передбачають регулюванням яскравості). У світлі цього чим вище цей показник — тим більше універсальним є екран, тим ширше діапазон умов, в якому його можна ефективно застосовувати. Зворотною стороною цих переваг є збільшення ціни і енергоспоживання.
Що стосується конкретних значень, то чимало сучасних ноутбуків мають яскравість
250 – 300 ніт і навіть
нижче. Цього цілком достатньо для роботи під штучним освітленням середньої інтенсивності, але от при яскравому природному світлі з видимістю вже можуть виникнути проблеми. Для використання в сонячну погоду (особливо поза приміщеннями) бажано мати запас по яскравості хоча б в межах
300 – 350 ніт. А в найбільш прогресивних моделях цей параметр може становити
350 – 400 ніт,
401 – 500 ніт< /a> і навіть більше 500 ніт.
Сертифікат TÜV Rheinland
Сертифікація дисплея ноутбука щодо безпечного рівня випромінювання синього світла і частоти мерехтіння панелі.
Наявність сертифікату TÜV Rheinland підтверджує комфортність екрану для очей.
TÜV Rheinland – великий міжнародний концерн зі штаб-квартирою в німецькому Кельні, що надає широкий перелік аудиторських послуг. Фахівцями компанії був розроблений і затверджений ряд тестів на відповідність екранів мобільних пристроїв, моніторів і телевізорів необхідного рівня захисту очей від шкідливого впливу випромінювання дисплеїв на зір користувача по той бік екрану. Авторитетна думка TÜV Rheinland має пошану в техноком'юніті. Сертифікати цього органу видаються успішно випробуваним зразкам електроніки за технології фільтрації синього світла і придушення мерехтіння екранів.
Тепловиділення (CPU TDP)
Кількість тепла, що виділяється процесором при роботі в штатному режимі. Цей параметр визначає вимоги до системи охолодження, необхідної для нормальної роботи процесора, тому іноді його називають TDP — thermal design power, буквально «потужність температурної (охолоджуючої) системи». Простіше кажучи, якщо процесор має тепловиділення в 60 Вт — для нього необхідна система охолодження, здатна відвести як мінімум таку кількість тепла. Відповідно чим нижче TDP - тим нижче вимоги до системи охолодження.
Тест Passmark CPU Mark
Результат, показаний процесором ноутбука в тесті Passmark CPU Mark.
Passmark CPU Mark — комплексний тест, більш детальний і достовірний, ніж популярний 3DMark06 (див. вище). Він перевіряє не тільки ігрові можливості CPU, але і його продуктивність в інших режимах, на підставі чого і виводить загальний бал; за цим балом можна досить достовірно оцінити процесор загалом (чим більше балів - тим вища продуктивність).
Частота пам’яті
Тактова частота оперативної пам'яті, встановленої в ноутбуці.
Чим вище частота (при тому ж типі та об'ємі пам'яті) — тим вище продуктивність RAM в цілому і тим швидше лептоп буде справлятися з ресурсоємними задачами. Правда, модулі з однаковою частотою можуть дещо відрізнятися за фактичній швидкодії через різницю в інших характеристиках; але ця різниця стає значущою лише в дуже специфічних ситуаціях, для рядового користувача вона не є критичною. Що ж стосується конкретних значень, то найбільшою популярністю на сучасному ринку користуються модулі на
2400 МГц,
2666 МГц,
2933 МГц і
3200 МГц. Пам'ять на
2133 МГц і менше зустрічається переважно в застарілих і бюджетних пристроях, а в високопродуктивних конфігураціях даний параметр становить
3733 МГц,
4266 МГц,
4800 МГц,
5200 МГц,
5500 МГц,
5600 і
більше.
Інтерфейс накопичувача M.2
Інтерфейс підключення, що використовується встановленим в ноутбуці SSD-модулем з роз'ємом M.2 (див. «Тип накопичувача»).
Однією з особливостей роз'єма M.2 і накопичувачів під нього є те, що вони можуть використовувати два різних інтерфейси підключення: PCI-E (в тому чи іншому різновиді) або SATA. Підкреслимо, що в даному пункті зазначаються дані SSD-модуля; в самому роз'ємі можуть передбачатися й інші варіанти інтерфейсу, у тому числі більш прогресивні — див. «Інтерфейс роз'єма M.2» (наприклад, накопичувач з підключенням
PCI-E 3.0 може бути розміщений в роз'ємі, що підтримує також більш швидкий
PCI-E 4.0). Однак у будь-якому разі роз'єм підключення зазвичай дає можливість реалізувати всі можливості встановленого накопичувача; так що даний пункт дає змогу цілком достовірно оцінити можливості штатного модуля M.2.
Що стосується конкретних інтерфейсів, то в наш час можна зустріти переважно такі варіанти:
— SATA 3. Інтерфейс SATA першопочатково був створений для традиційних жорстких дисків. Третя версія цього інтерфейсу є останньою; вона забезпечує швидкість передачі даних 600 МБ/с. Це значно менше, ніж у PCI-E, і в цілому дуже небагато за мірками SSD-накопичувачів. Тому M.2-підключення з використанням SATA характерне переважно для недорогих модулів початкового рівня. Тим не менше, навіть такі носії в цілому працюють швидше більшості HDD.
— PCI-E. Універсальний інт
...ерфейс для підключення внутрішньої периферії. Забезпечує в цілому вищі швидкості, ніж SATA, завдяки чому краще підходить для SSD-модулів: теоретично PCI-E дає змогу реалізувати весь потенціал твердотільних накопичувачів, навіть найшвидших. На практиці ж підтримувана швидкість передачі даних може бути різною — залежно від версії інтерфейсу і числа ліній (каналів передачі даних). Ось варіанти, найактуальніші для сучасних ноутбуків:
- PCI-E 3.0 2x. Підключення з використанням 2 ліній PCI-E версії 3.0. Ця версія забезпечує швидкість близько 1 ГБ/с на лінію; відповідно, дві лінії дають максимум трохи менше ніж в 2 ГБ/с.
- PCI-E 3.0 4x. Підключення з використанням 4 ліній PCI-E версії 3.0. Забезпечує максимальну швидкість близько 4 ГБ/с.
- PCI-E 4.0 4x. Підключення з використанням 4 ліній PCI-E версії 4.0. У цій версії пропускна здатність, в порівнянні з PCI-E 3.0, була збільшена вдвічі — таким чином, 4 лінії дають максимальну швидкість близько 8 МБ/с.
Зазначимо, що у разі роз'ємів M.2 різні варіації PCI-E зазвичай цілком сумісні між собою — хіба що швидкість підключення при роботі з «нерідним» роз'ємом буде обмежуватися можливостями найповільнішого компонента. Наприклад, при підключенні SSD-модуля PCI-E 3.0 4x в слот PCI-E 3.0 2x ця швидкість буде відповідати можливостям роз'єма, а при підключенні до PCI-E 4.0 4x — можливостям накопичувача.