Polska
Katalog   /   Klimatyzacja, ogrzewanie i zaopatrzenie w wodę   /   Chłodzenie i klimatyzacja   /   Osuszacze powietrza

Porównanie Maltec DH-800 vs MYCOND Roomer 12

Dodaj do porównania
Maltec DH-800
MYCOND Roomer 12
Maltec DH-800MYCOND Roomer 12
od 159 zł
Produkt jest niedostępny
od 806 zł
Produkt jest niedostępny
TOP sprzedawcy
Rodzajdomowydomowy
Rodzajtermoelektrycznykondensacyjny
Montażpodłogowypodłogowy
Specyfikacja
Wydajność0.3 l/dobę11.5 l/dobę
Pobór mocy22 W250 W
Zalecana powierzchnia pomieszczenia25 m²25 m²
Rodzaj podłączeniajednofazowe (230 V)jednofazowe (230 V)
Sterowaniemechanicznepanel dotykowy
Asystent głosowyytn lfyys[ytn lfyys[
Przepływ powietrza100 m³/h
Zakres wilgotności30 — 80 % Rh
Zakres temperatury pracy15 — 32 °C5 – 32 °C
Pojemność zbiornika na skropliny0.8 l2 l
Czynnik chłodniczyR134A
Funkcje i możliwości
Funkcje
 
 
 
 
 
wskaźnik napełnienia zbiornika
wyłączanie po napełnieniu zbiornika
odprowadzanie skroplin
higrostat
regulacja prędkości wentylatora
jonizator
automatyczne wyłączanie
filtr powietrza
wskaźnik napełnienia zbiornika
wyłączanie po napełnieniu zbiornika
 
Dane ogólne
Kółka transportowe
Wyświetlacz
Wymiary225x155x140 mm490x310x200 mm
Waga1 kg11.5 kg
Data dodania do E-Katalogpaździernik 2023listopad 2019

Rodzaj

Kondensacja. Modele działające na zasadzie klimatyzatora - usuwanie nadmiaru wilgoci odbywa się poprzez kondensację pary wodnej. Aby to zrobić, konstrukcja takich suszarek obejmuje parownik i skraplacz, a czynnik chłodniczy krąży w obwodzie układu. Urządzenie na siłę zasysa wilgotne powietrze z pomieszczenia i kieruje je przez parownik, gdzie strumienie schładzane są do punktu rosy i spada kondensacja. Zebrana wilgoć kierowana jest do specjalnego zbiornika lub usuwana poprzez drenaż. W kolejnym etapie wentylator w konstrukcji osuszacza przepuszcza masy powietrza przez skraplacz, co powoduje ich lekkie podgrzanie i usunięcie suchego, ciepłego powietrza na zewnątrz. Zdecydowana większość modeli domowych należy do kategorii suszarek kondensacyjnych.

Termoelektryczny (Peltier). Osuszacze powietrza z płytami termoelektrycznymi w swojej konstrukcji - tak zwane „elementy Pelte”. Kiedy do takiej płytki zostanie przyłożone stałe napięcie, jedna jej strona nagrzewa się, a druga staje się zimna. Para wodna z powietrza skrapla się po stronie zimnej, a osuszone powietrze jest podgrzewane po stronie gorącej. Kondensat spływa do specjalnego pojemnika. Osuszacze z elementami Peltiera mają konstrukcję bezsprężarkową i są przeznaczone do osuszania małych pomieszczeń.

- Adsorpcja. Specyficzny rodzaj osuszacza, który wykorzystuje tzw. technologię adsorpcji, czyli poch...łaniania wilgoci z powietrza przez specjalną substancję pochłaniającą. To właśnie odróżnia urządzenia adsorpcyjne od innych typów osuszaczy, które wykorzystują zasadę kondensacji wilgoci na chłodzonych powierzchniach. Technologia jest dość kosztowna, jednak pozwala na pracę w szerokim zakresie temperatur, w tym także ujemnych. Takie jednostki są niezbędne w lodówkach i zamrażarkach, na niektórych etapach produkcji chemicznej, na krytych stadionach lodowych oraz w innych specyficznych warunkach, dla których modele kondensacyjne nie są odpowiednie.

Wydajność

Wydajność nominalna osuszacza to maksymalna ilość wilgoci, jaką urządzenie może usunąć z powietrza w ciągu dnia.

Aby osuszacz działał wydajnie, jego wydajność nie może być mniejsza niż ilość nadmiaru wilgoci, która w tym samym czasie gromadzi się w pomieszczeniu. Ilość tę można obliczyć za pomocą specjalnych formuł lub programów kalkulatora. Co prawda, wyniki takich obliczeń są dość przybliżone, jednak można je wykorzystać w doborze, a dla pełnej gwarancji warto wziąć margines wydajności co najmniej 10 – 20%. W razie potrzeby ten zapas może być większy; należy jednak pamiętać, że wysoka wydajność znacząco wpływa na cenę, wymiary i zużycie energii osuszacza.

Jeśli chodzi o konkretne wartości, modele podstawowe do małych pomieszczeń zapewniają nie więcej niż 25 l/dobę. Wartości 26 – 50 l/dobę można nazwać średnimi, 51 – 75 l/dobę – powyżej średniej; istnieje również wiele wydajnych jednostek profesjonalnych o wydajności ponad 75 l/dobę.

Pobór mocy

Pobór mocy przez osuszacz podczas normalnej pracy.

Z praktycznego punktu widzenia ta cecha jest drugorzędna – producenci dobierają moc w taki sposób, aby zapewnić wymagane parametry pracy (wydajność, przepływ powietrza itp.), a przy wyborze warto skupić się przede wszystkim na tych parametrach. Niemniej jednak od zużycia energii zależą również pewne praktyczne kwestie. Po pierwsze, tylko modele o mocy nie większej niż 3 – 3,5 kW można podłączyć do zwykłych domowych gniazdek; wyższy pobór mocy wymaga albo zasilania 400 V (patrz „Typ podłączenia”), albo bezpośredniego podłączenia do rozdzielnicy. Jednak we współczesnych osuszaczach rzadko spotyka się moc nawet większą niż 2 kW – dla większości tych urządzeń pobór mocy mieści się w przedziale od 500 do 1000 W lub od 1000 do 2000 W, a w najskromniejszych modelach w ogóle nie przekracza 500 W. Po drugie, dane dotyczące mocy mogą być wymagane do obliczenia obciążenia sieci. Taka potrzeba pojawia się głównie przy doborze dodatkowego wyposażenia – wyłączników, stabilizatorów, zasilaczy awaryjnych itp.

Należy również pamiętać, że modele o podobnych parametrach mogą różnić się zużyciem energii. Oszczędniejszy osuszacz jest często droższy, ale przy regularnym użytkowaniu ta różnica procentuje niższymi kosztami energii.

Sterowanie

Rodzaj sterowania przewidziany w konstrukcji osuszacza.

Rodzaj sterowania określa, w jaki sposób zewnętrzne elementy sterujące (przyciski, pokrętła, suwaki) współdziałają z „wypełnieniem” urządzenia. Możliwe są tutaj dwie opcje:

Mechaniczne. Systemy, w których elementy sterujące działają bezpośrednio na poszczególne jednostki osuszacza. Na przykład sterowanie prędkością wentylatora (patrz „Funkcje”) w takich systemach można przeprowadzić za pomocą suwaka, który bezpośrednio zmienia rezystancję rezystora w obwodzie zasilania wentylatora; wyłącznik czasowy (patrz ibid.) to pokrętło z mechanizmem zegarowym itp. Sterowanie mechaniczne jest niezwykle proste i niezawodne, nadaje się do wszystkich podstawowych funkcji osuszacza i jest niedrogie. Z drugiej strony pod względem dokładności takie systemy są gorsze od elektronicznych, co więcej — nie pozwalają na implementację wielu dodatkowych funkcji (pilot, wyświetlacz itp.). Dlatego chociaż ten rodzaj sterowania można spotkać we wszystkich kategoriach osuszaczy, to generalnie na współczesnym rynku jest mniej takich modeli niż elektronicznych.

Elektroniczne. Sterowanie realizowane przez specjalny obwód elektroniczny: każda czynność użytkownika (naciśnięcie przycisku, przekręcenie pokrętła itp.) jest przetwarzana przez ten obwód, a z niego sygnały sterujące są wysyłane do elementów roboczych osuszacza. Takie systemy są bardziej funk...cjonalne i zaawansowane niż systemy mechaniczne. Pozwalają więc na korzystanie z różnych dodatkowych funkcji, które znacząco „ułatwiają życie” użytkownikowi – na przykład z wyświetlaczy i pilotów; poszczególne parametry można kontrolować z bardzo dużą precyzją i małymi skokami regulacji. Za wady systemów elektronicznych uważa się wyższy koszt i niższa niezawodność niż systemów mechanicznych, a także złożoność naprawy. Jednocześnie te niedociągnięcia nie są tak często krytyczne: na przykład różnice w kosztach są zwykle prawie niezauważalne na tle całkowitej ceny urządzeń, a prawdopodobieństwo awarii we współczesnej elektronice jest nadal bardzo niskie. Jest to więc obecnie najpopularniejszy rodzaj sterowania wśród osuszaczy wszystkich kategorii. Może ono być realizowane przy pomocy przycisków lub panelu dotykowego. To drugie nadaje urządzeniu elegancji.

Przepływ powietrza

Maksymalna ilość powietrza, którą osuszacz może przetworzyć w ciągu godziny.

Wybór według tego parametru zależy od wielkości pomieszczenia. Uważa się, że w celu efektywnego działania osuszacz musi przepuścić przez siebie ilość powietrza w ciągu godziny, która przekracza powierzchnię pomieszczenia 3 – 4 razy; możesz określić powierzchnię pomieszczenia, mnożąc powierzchnię przez wysokość sufitu. Na przykład pomieszczenie o powierzchni 12 m2 z sufitami o wysokości 2,5 m pomieści 12*2,5 = 30 m3 powietrza; odpowiednio do wydajnej pracy w takim pomieszczeniu wymagany jest osuszacz o wydajności 30*3 = 90 m3/h, a najlepiej 30*4 = 120 m3/h. Całkiem możliwe jest wybranie urządzenia z marginesem przepływu powietrza — chyba że trzeba liczyć się z tym, że wzrost wydajności wpływa na cenę i zużycie energii. Jednak zbyt niska wartość tego parametru jest niepożądana: taki osuszacz po prostu nie radzi sobie skutecznie ze swoim zadaniem.

Jeśli chodzi o konkretne liczby, modele o stosunkowo niskiej mocy przetwarzają do 250 m3/h, urządzenia o wydajności 251 – 500 m3/h i 501 – 750 m3/h można uznać za należące do średniego poziomu, a wiele urządzeń jest w stanie przetworzyć więcej niż 750 m3/h.

Zakres wilgotności

Zakres wilgotności względnej (Rh — relative humidity) otaczającego powietrza, przy której osuszacz na pewno poradzi sobie ze swoim zadaniem, a jednocześnie zapewni wydajność na poziomie deklarowanym przez producenta.

Im szerszy zakres, tym bardziej wszechstronne urządzenie, tym mniejsze prawdopodobieństwo, że znajdzie się w niestandardowych warunkach. Jednocześnie przy wyborze warto wziąć pod uwagę specyfikę zastosowania osuszacza. Tak więc osuszacze są początkowo projektowane z myślą o wysokiej wilgotności powietrza, ale nie zawsze wymagana jest zdolność do działania przy 100% wilgotności względnej. Na przykład w zimnych porach powietrze napływające z ulicy jest samoczynnie „osuszane” podczas nagrzewania w pomieszczeniu (ze względu na wzrost temperatury wilgotność względna spada, chociaż rzeczywista ilość wilgoci w powietrzu nie ulega zmianie), a nawet przy deszczowej pogodzie osuszacz o zakresie 80 – 90% może wystarczyć. Dolna granica wilgotności zależy bezpośrednio od zadań stojących przed urządzeniem. Jeśli mówimy o pomieszczeniach mieszkalnych, biurach i innych miejscach, w których konieczne jest stworzenie przyjemnych warunków dla ludzi, należy wziąć pod uwagę, że najbardziej komfortowe wartości dla osoby w stosunku do wilgotności wynoszą 40 – 70%. Dlatego w takich warunkach nie ma sensu szukać konkretnie urządzenia z dolną granicą mniejszą niż 40%. Ale do zadań specjalnych, takich jak suszenie pomieszczeń podczas remontu, przechowywanie w magazynie itp. mogą...być również potrzebne niższe wskaźniki wilgotności.

Należy pamiętać, że wyjście poza zakres roboczy nie zawsze jest sytuacją awaryjną, obarczoną awariami i innymi problemami: wiele modeli jest w stanie pracować w takich warunkach, chyba że wydajność pracy może się zmniejszyć. Jednak ten punkt warto wyjaśnić zgodnie z oficjalną dokumentacją.

Zakres temperatury pracy

Zakres temperatur otoczenia, w którym osuszacz może normalnie pracować. Im szerszy zakres, tym bardziej wszechstronny osuszacz, tym bardziej zróżnicowane są warunki, w jakich może być używany. Należy pamiętać, że w przeciwieństwie do zakresu wilgotności (patrz wyżej), przekroczenie temperatury roboczej jest obarczone nie tylko utratą wydajności, ale także poważnymi usterkami, a nawet awariami. Dlatego warto dobierać urządzenie według tego parametru w taki sposób, aby zagwarantować pokrycie ewentualnych wahań temperatury powietrza, z jakim osuszacz ma pracować.

Należy pamiętać, że większość nowoczesnych modeli jest zaprojektowana do pracy w temperaturach „plusowych”, a dolny próg wynosi średnio około 4 – 5 °C. Jedynym rodzajem osuszaczy, które potrafią działać w temperaturach poniżej zera, są adsorpcyjne (patrz „Rodzaj”).

Pojemność zbiornika na skropliny

Pojemność zbiornika do zbierania skroplonej wody (wilgoci usuwanej z powietrza), przewidzianego w konstrukcji osuszacza.

Im pojemniejszy zbiornik na skropliny, tym wolniej będzie się napełniał i tym rzadziej trzeba go opróżniać. Jest to szczególnie ważne w przypadku urządzeń o wysokiej wydajności (patrz wyżej). Z drugiej strony pojemny zbiornik jest odpowiednio zwymiarowany, co wpływa na wymiary osuszacza. Oceniając zależność pomiędzy pojemnością zbiornika a wydajnością osuszacza, należy pamiętać, że urządzenie bardzo rzadko pracuje z pełną wydajnością. Aby uzyskać szczegółowe informacje, zobacz „Wydajność”; tutaj zwracamy uwagę, że jeśli np. osuszacz o wydajności 24 l/dobę ma zbiornik o pojemności 4 l, to nie oznacza to, że zbiornik będzie koniecznie napełniany do góry co 4 godziny. Alternatywą dla zbiorników jest zastosowanie stałych systemów odprowadzania skroplin; aby uzyskać więcej szczegółów, patrz „Funkcje”.

Czynnik chłodniczy

Rodzaj czynnika chłodniczego zastosowanego w osuszaczu.

Czynnikiem chłodniczym nazywany jest specjalna substancja (najczęściej freon), która krąży po obwodzie chłodzenia w osuszaczach działających na zasadzie kondensacji (a są to wszystkie odmiany, z wyjątkiem adsorpcyjnych - patrz „Rodzaj”). Substancja ta zapewnia usuwanie nadmiaru ciepła powstającego podczas kondensacji wilgoci. Rodzaj czynnika chłodniczego zależy przede wszystkim od technicznych cech jego zastosowania, takich jak możliwość częściowej wymiany oraz wymagania dotyczące wytrzymałości obwodu chłodniczego.

We współczesnych osuszaczach można znaleźć głównie takie marki czynników chłodniczych, jak R22, R407C, R410A, R134A, R290 i R32. Oto ich ogólny opis:

— R22. „ Najstarszy” z czynników chłodniczych spotykanych w naszych czasach. Wyróżnia się niskim kosztem, niskim ciśnieniem roboczym (co pozytywnie wpływa na niezawodność i cenę samych obwodów chłodniczych) oraz jednorodnym składem, co pozwala nie zmieniać całego czynnika chłodniczego w przypadku jego wycieku, ale po prostu uzupełnić system wymaganą ilością płynu. Jednak R22 jest niebezpieczny dla środowiska (głównie dla warstwy ozonowej), dlatego obecnie jest stopniowo zastępowany przez bardziej zaawansowane substancje.

...— R32. Dość zaawansowany czynnik chłodniczy, który łączy w sobie trzy kluczowe zalety: wydajność, bezpieczeństwo środowiskowe i jednorodność. Osuszacze z R32 mogą być jednocześnie kompaktowe i wydajne; substancja ta nie zubaża warstwy ozonowej i nie wpływa znacząco na globalne ocieplenie. Główną wadą modeli z tego rodzaju czynnikiem chłodniczym jest wysoka cena.

— R407C. Czynnik chłodniczy zaprojektowany jako bezpieczna alternatywa dla R22; nie ma wpływu na warstwę ozonową. Jednocześnie taka substancja jest znacznie droższa; jej ciśnienie robocze jest nieco wyższe, dlatego wymagana jest większa wytrzymałość obwodu chłodzącego (choć nie tak duża jak dla R410A); olej poliestrowy używany z R407C ma tendencję do wchłaniania wilgoci i utraty swoich właściwości. Ponadto ten czynnik chłodniczy jest zeotropowy (niejednorodny w składzie): jego składniki mają różne temperatury wrzenia i różne szybkości parowania. W rezultacie nawet przy niewielkim wycieku skład czynnika chłodniczego i jego właściwości zmieniają się, a sytuację można poprawić tylko poprzez całkowitą wymianę freonu.

— R410A. Kolejna „zielona” alternatywa dla R22. W przeciwieństwie do R407C jest czynnik ten azeotropowy — składa się ze składników o takich samych właściwościach parowania; tak, że w przypadku wycieku stosunek tych składników nie zmienia się, a w tym przypadku dozwolone jest uzupełnienie obwodu zamiast całkowitej wymiany freonu. Z drugiej strony R410A ma wysokie ciśnienie robocze, co stawia poważne wymagania co do wytrzymałości i niezawodności obwodu chłodzącego i zwiększa jego koszt; ponadto sam czynnik chłodniczy jest dość drogi.

— R454C. Czynnik chłodniczy na bazie hydrofiliny jest uważany za przyjazny i bezpieczny dla środowiska i stanowi kolejną opcję zastępującą przestarzały R22 i alternatywę dla R407C. Skład jest mieszaniną R32 i R1234YF.

— R134A. Jeden z nowoczesnych freonów o zaawansowanych właściwościach. Jest całkowicie jednorodny, podobnie jak R22, ale jednocześnie jest całkowicie bezpieczny dla warstwy ozonowej i charakteryzuje się niskim współczynnikiem wpływu na globalne ocieplenie. Wadą tego czynnika chłodniczego jest tradycyjnie wysoki koszt; ponadto wykorzystuje olej poliestrowy, który ma tendencję do wchłaniania wilgoci.

— R290. Skroplony propan używany jako czynnik chłodniczy. Posiada szereg zalet: nietoksyczny, przyjazny dla środowiska (zerowy wpływ na warstwę ozonową, minimalny wpływ na globalne ocieplenie), jednorodny (czyli nie wymaga całkowitej wymiany w przypadku wycieku, wystarczy uzupełnienie brakującej ilości), stosuje się go z olejem mineralnym niewrażliwym na wilgoć. Ponadto propan ma niskie ciśnienie robocze, co upraszcza projekt obwodu i obniża koszty, a także niskie temperatury wylotowe kompresora zwiększające wydajność. Ten czynnik chłodniczy ma dwie wady: łatwopalność i wysokie wymagania dotyczące mocy kompresora, więc takie urządzenia są dość ciężkie i nieporęczne. Dlatego pomimo wszystkich zalet R290 jest rzadko używany.
Dynamika cen
Maltec DH-800 często porównują
MYCOND Roomer 12 często porównują