Tryb nocny
Polska
Katalog   /   Klimatyzacja, ogrzewanie i zaopatrzenie w wodę   /   Ogrzewanie i kotły   /   Kotły grzewcze

Porównanie Bosch Gaz 6000 WBN-18C RN 18 kW vs Bosch ZWC 24-3 MFA 24 kW
230 V

Dodaj do porównania
Bosch Gaz 6000 WBN-18C RN 18 kW
Bosch ZWC 24-3 MFA 24 kW 230 V
Bosch Gaz 6000 WBN-18C RN 18 kWBosch ZWC 24-3 MFA 24 kW
230 V
od 2 665 zł
Produkt jest niedostępny
od 7 740 zł
Produkt jest niedostępny
Opinie
1
0
0
3
TOP sprzedawcy
Źródło energiigazgaz
Montażściennyścienny
Rodzajdwufunkcyjnydwufunkcyjny
Powierzchnia grzewcza144 m²180 m²
Parametry techniczne
Moc użyteczna18 kW24 kW
Min. moc5.4 kW
Zasilanie230 V230 V
Pobór mocy121 W
Min. temp. czynnika grzewczego40 °С40 °С
Maks. temp. czynnika grzewczego85 °С88 °С
Maks. ciśnienie w obiegu grzewczym3 bar3 bar
Maks. ciśnienie w obiegu CWU10 bar10 bar
Pozostałe parametry
Min. temp. ciepłej wody40 °С40 °С
Maks. temp. ciepłej wody60 °С60 °С
Wydajność (Δt=25 °C)8.6 l/min
Wydajność (Δt ~ 30 °C)11.5 l/min
Letni tryb pracy
Tryb ogrzewania podłogowego
Pompa obiegowa
Protokół komunikacyjnyOpenTherm
Parametry techniczne kotła
Sprawność93.2 %
Komora spalaniazamkniętazamknięta
Średnica komina60/100 mm60/100 mm
Nominalne ciśnienie wlotowe gazu16 mbar13 mbar
Maks. zużycie gazu2.1 m³/h2.8 m³/h
Pojemność zbiornika wyrównawczego8 l8 l
Ciśnienie w zbiorniku wyrównawczym0.5 bar
Wymiennik ciepłamiedziany
Przyłącza
Wlot zimnej wody1/2"1/2"
Wyjście CWU1/2"1/2"
Podłączenie gazu3/4"3/4"
Podłączenie zasilania c.o.3/4"3/4"
Podłączenie powrotu c.o.3/4"3/4"
Bezpieczeństwo
Zabezpieczenia
przed spadkiem ciśnienia gazu
przed przegrzaniem wody
przed zgaśnięciem płomienia
przed brakiem ciągu
 
przed zaburzeniem cyrkulacji wody
przed zamarznięciem wody w obiegu
przed spadkiem ciśnienia gazu
przed przegrzaniem wody
przed zgaśnięciem płomienia
przed brakiem ciągu
przed zanikiem prądu
przed zaburzeniem cyrkulacji wody
przed zamarznięciem wody w obiegu
Dane ogólne
Wymiary (WxSxG)700x400x299 mm850x400x370 mm
Waga36 kg42.9 kg
Data dodania do E-Katalogsierpień 2014lipiec 2013

Powierzchnia grzewcza

Maksymalna powierzchnia pomieszczenia, którą kocioł może wydajnie ogrzać. Warto jednak wziąć pod uwagę, że różne budynki mają różne właściwości termoizolacyjne, a nowoczesne budynki są znacznie „cieplejsze” niż domy 30-letnie, a tym bardziej 50-letnie. W związku z tym, punkt ten ma raczej charakter referencyjny i nie pozwala na pełną ocenę rzeczywistego ogrzewanego obszaru. Istnieje wzór, za pomocą którego można wywnioskować maksymalną powierzchnię grzewczą, znając moc użyteczną kotła i warunki klimatyczne, w których będzie on używany; zobacz "Moc użyteczna", aby uzyskać szczegółowe informacje. W naszym przypadku powierzchnia grzewcza liczona jest według wzoru „moc kotła pomnożona przez 8”, co w przybliżeniu jest równoznaczne wykorzystaniu w kilkunastoletnich domach.

Moc użyteczna

Użyteczna moc kotła to moc grzewcza, jaką zapewnia on w trybie maksymalnym.

Zdolność urządzenia do ogrzewania pomieszczenia o określonej powierzchni zależy bezpośrednio od tego parametru; przez moc można w przybliżeniu określić obszar ogrzewania, jeśli parametr ten nie jest wskazany w charakterystyce. Najbardziej ogólna zasada jest taka, że w przypadku pomieszczenia mieszkalnego o wysokości sufitu 2,5 - 3 m do ogrzania 1 m2 powierzchni potrzeba co najmniej 100 W mocy cieplnej. Istnieją również bardziej szczegółowe metody obliczeniowe, które uwzględniają określone czynniki: strefę klimatyczną, przepływ ciepła na zewnątrz, cechy konstrukcyjne systemu grzewczego itp.; są one szczegółowo opisane w specjalnych źródłach. Zwracamy również uwagę, że w kotłach dwufunkcyjnych (patrz „Rodzaj”) część wytworzonego ciepła jest przekazywana na ogrzewanie celem zaopatrzenia w ciepłą wodę; należy to wziąć pod uwagę przy ocenie mocy użytecznej.

Uważa się, że kotły o mocy powyżej 30 kW należy instalować w oddzielnych pomieszczeniach (kotłowniach).

Min. moc

Minimalna moc cieplna, z jaką kocioł grzewczy może pracować w trybie ciągłym. Praca z minimalną mocą pozwala zmniejszyć liczbę cykli włączania i wyłączania, które niekorzystnie wpływają na trwałość kotłów grzewczych.

Pobór mocy

Maksymalna moc elektryczna pobierana przez kocioł podczas pracy. W przypadku modeli nieelektrycznych (patrz „Źródło zasilania”) moc ta jest zwykle niska, jest ona potrzebna głównie dla obwodów sterujących i nie można na nią zwracać szczególnej uwagi. W przypadku kotłów elektrycznych warto zauważyć, że pobór mocy w nich jest najczęściej nieco wyższy od mocy użytecznej, ponieważ część energii jest nieuchronnie rozpraszana i nie jest wykorzystywana do ogrzewania. W związku z tym, zgodnie ze stosunkiem mocy użytecznej do zużytej, można oszacować sprawność takiego kotła.

Maks. temp. czynnika grzewczego

Maksymalna temperatura robocza chłodziwa w układzie kotła podczas pracy w trybie grzania.

Wydajność (Δt=25 °C)

Wydajność kotła dwufunkcyjnego w trybie zaopatrzenia w ciepłą wodę przy nagrzaniu wody o około 25 °C powyżej temperatury początkowej.

Wydajność to maksymalna ilość gorącej wody, jaką urządzenie może wytworzyć w ciągu minuty. Zależy ona nie tylko od mocy samego podgrzewacza, lecz także od tego, ile wody należy ogrzać: im wyższa różnica temperatur (Δt - „delta te”) między wodą zimną a ogrzaną, tym więcej energii jest potrzebne do ogrzania i tym mniejsza ilość wody, jaką kocioł może obsłużyć w tym trybie. Dlatego wydajność kotłów dwufunkcyjnych koniecznie wskazywana jest dla konkretnych wariantów Δt - mianowicie 25 °C, 30 °C i / lub 50 °C. Warto wybierać według tego wskaźnika, biorąc pod uwagę początkową temperaturę wody a także jakie jest zapotrzebowanie na ciepłą wodę w miejscu instalacji kotła (ile punktów poboru, jakie wymagania temperaturowe itp.); szczegółowe zalecenia na ten temat można znaleźć w dedykowanych źródłach.

Przypominamy, że woda zaczyna być odczuwana przez człowieka jako ciepła od około 40 °C, jako gorąca - od około 50 °C, a temperatura ciepłej wody w systemach centralnego zaopatrzenia (zgodnie z oficjalnymi normami) wynosi co najmniej 60 °C. Tak więc, aby kocioł pracował w trybie Δt ~25 °C i wytwarzał co najmniej ciepłą wodę o temperaturze 40 °C, początkowa temperatura wody zimnej powinna wynosić około 15 °C (15+25=40 °C). Jest to dość wysoka wartość - na przykład w centralnym systemie zaopatrzenia w wodę zimna woda osiąga 15 °C tylko...latem, gdy rury wodne wyraźnie się nagrzewają; to samo dotyczy wody dostarczanej ze studni. Tak więc, taka wydajność jest wartością bardzo umowną, w praktyce kocioł nieczęsto pracuje przy różnicy temperatur 25 °C. Niemniej jednak dane dla Δt = 25 °C są nadal często podawane w charakterystyce - w tym w celach reklamowych, gdyż w tym trybie cyfry dotyczące wydajności są najwyższe. Dodatkowo informacja ta może być przydatna, jeśli kocioł pełni funkcję wstępnego podgrzewacza wody, a dogrzewanie do temperatury roboczej zapewnia inne urządzenie - np. kocioł elektryczny lub przepływowy podgrzewacz wody.

Wydajność (Δt ~ 30 °C)

Wydajność kotła dwufunkcyjnego w trybie zaopatrzenia w ciepłą wodę przy nagrzaniu wody o około 30 °C powyżej temperatury początkowej.

Wydajność to maksymalna ilość gorącej wody, jaką urządzenie może wytworzyć w ciągu minuty. Zależy ona nie tylko od mocy samego podgrzewacza, lecz także od tego, ile wody należy ogrzać: im wyższa różnica temperatur (Δt - „delta te”) między wodą zimną a ogrzaną, tym więcej energii jest potrzebne do ogrzania i tym mniejsza ilość wody, jaką kocioł może obsłużyć w tym trybie. Dlatego wydajność kotłów dwufunkcyjnych koniecznie wskazywana jest dla konkretnych wariantów Δt - mianowicie 25 °C, 30 °C i / lub 50 °C. Warto wybierać według tego wskaźnika, biorąc pod uwagę początkową temperaturę wody a także jakie jest zapotrzebowanie na ciepłą wodę w miejscu instalacji kotła (ile punktów poboru, jakie wymagania temperaturowe itp.); szczegółowe zalecenia na ten temat można znaleźć w dedykowanych źródłach.

Przypominamy, że woda zaczyna być odczuwana przez człowieka jako ciepła od około 40 °C, jako gorąca - od około 50 °C, a temperatura ciepłej wody w systemach centralnego zaopatrzenia (zgodnie z oficjalnymi normami) wynosi co najmniej 60 °C. Tak więc, aby kocioł pracował w trybie Δt ~30 °C i wytwarzał co najmniej ciepłą wodę o temperaturze 40 °C, początkowa temperatura wody zimnej powinna wynosić około 10 °C (10+30=40 °C). Podobna temperatura może występować w studniach w ciepłą porę roku, a także w tę porę roku zimna woda w centralnym...wodociągu często nagrzewa się do 10 °C. Jednak kotły, w tym dwufunkcyjne, włączane są głównie w chłodne dni, kiedy początkowa temperatura wody jest zauważalnie niższa. W związku z tym, jeśli kocioł jest używany jako główny podgrzewacz wody - podgrzanie do deklarowanych temperatur (patrz "Min. t CWU", "Maks. t CWU") często wymaga więcej Δt niż 30 °C, a wydajność okazuje się niższa niż wskazano w tym punkcie. Jednak przy pracy w trybie podgrzewania wstępnego (gdy woda jest podgrzewana do pożądanej temperatury przez urządzenie dodatkowe, takie jak kocioł), wskaźnik ten bardzo niezawodnie opisuje możliwości urządzenia.

Tryb ogrzewania podłogowego

Kocioł posiada specjalny tryb do ogrzewania podłogowego.

Ciepłe podłogi różnią się od konwencjonalnych systemów grzewczych przede wszystkim niższą temperaturą chłodziwa - w przeciwnym razie podłoga mogłaby być zbyt gorąca do komfortowego użytkowania (dodatkowo wysokie temperatury są również niepożądane do pokrycia podłogi i zainstalowanych na niej mebli). Ponadto kotły z tą funkcją wyróżniają się zwiększoną mocą pompy - w celu zapewnienia efektywnej cyrkulacji chłodziwa przez rozgałęzione obwody grzewcze o dość dużej rezystancji.

Protokół komunikacyjny

Magistrala komunikacyjna, z którą kocioł jest kompatybilny.

Magistrala jest kanałem komunikacyjnym, za pośrednictwem którego urządzenia sterujące i sterowane mogą wymieniać dane. Obsługa takiego kanału znacznie upraszcza podłączenie termostatów i innej automatyki sterującej - wystarczy, że takie urządzenia są kompatybilne z tą samą magistralą co kocioł. Ponadto wiele rodzajów magistrali komunikacyjnych pozwala tworzyć bardzo rozbudowane systemy monitoringu i sterowania oraz łatwo integrować w nie różne urządzenia, w tym kotły grzewcze.

W nowoczesnym sprzęcie grzewczym najpopularniejsze magistrale to OpenTherm, eBus, Bus BridgeNet i EMS. Oto ich kluczowe cechy:

- OpenTherm. Dość prosty standard o skromnej funkcjonalności: pozwala tylko na bezpośrednie połączenie sterującego i sterowanego urządzenia, nie jest przeznaczony do tworzenia rozbudowanych systemów. Z drugiej strony, taka magistrala ma dość zaawansowane możliwości sterowania urządzeniami grzewczymi: w szczególności pozwala regulować temperaturę nie tylko poprzez włączanie/wyłączanie kotła, lecz także poprzez zmianę mocy palnika gazowego. Ten tryb pracy pomaga oszczędzać paliwo/energię, a także zmniejszać zużycie i wydłużać żywotność nagrzewnicy; a w wielu przypadkach do sprawnego sterowania ogrzewaniem wystarcza system dwóch urządzeń (kotła i termostat...u). Jednocześnie standard OpenTherm jest prosty i tani w realizacji, co czyni go niezwykle popularnym w nowoczesnych kotłach. Z wielu powodów stosuje się go głównie w modelach gazowych.

- e-Bus. Magistrala komunikacyjna o imponujących możliwościach praktycznych. Pozwala na zjednoczenie w jednym systemie do 25 urządzeń sterujących i 228 sterowanych, z odległością transmisji danych pomiędzy poszczególnymi elementami do 1 km. Jednocześnie eBUS jest standardem otwartym, jego wdrożenie (przynajmniej w zakresie podstawowych funkcji) jest dostępne bezpłatnie dla każdego. I choć obecnie obsługę eBUS można spotkać głównie w urządzeniach Protherm i Vaillant, to generalnie w kotłach jest to drugi, po OpenTherm, najpopularniejszy typ magistrali komunikacyjnej. Takie odstawanie wynika głównie z nieco wyższego kosztu, podczas gdy zaawansowane możliwości eBUS nie są tak często potrzebne.

- Bus BridgeNet. Autorskie opracowanie Hotpoint-Ariston, stosowane wyłącznie w kotłach tej marki. Jedną z zalet jest wysoki stopień automatyzacji: użytkownik musi tylko ustawić parametry temperatury (a dla różnych stref można wybrać własne opcje) oraz, w razie potrzeby, program na tydzień, resztę niezbędnych obliczeń i korekty zostaną przeprowadzone przez system. Jednak takie możliwości są dostępne tylko w specjalnych urządzeniach sterujących, takich jak termostaty; w kotłach, obsługa Bus BridgeNet oznacza zazwyczaj tylko kompatybilność z podobną automatyką.

- EMS. Magistrala komunikacyjna stosowana głównie w urządzeniach Bosch i Buderus. Generalnie cechuje się szeroką funkcjonalnością, wysokim stopniem automatyzacji oraz możliwością tworzenia rozbudowanych systemów sterowania. Należy jednak pamiętać, że w dzisiejszych czasach można spotkać zarówno oryginalny EMS, jak i zmodyfikowany EMS Plus, a standardy te początkowo nie są ze sobą kompatybilne (choć wsparcie dla obu z nich może być zapewnione w poszczególnych urządzeniach). Tak więc, konkretna wersja magistrali EMS powinna być określona osobno; należy zauważyć, że w sprzęcie Bosch występuje głównie wersja oryginalna, a w urządzeniach Buderus - EMS Plus (chociaż możliwe są wyjątki tam i tam).
Bosch Gaz 6000 WBN-18C RN często porównują
Bosch ZWC 24-3 MFA często porównują