Wejście danych (port WAN)
Sposoby połączenia z Internetem (lub z inną siecią zewnętrzną, np. w
trybie pomostu) obsługiwane przez urządzenie.
Klasyczną, najpopularniejszą obecnie wersją takiego połączenia jest
LAN (Ethernet), jednak to nie koniec. Połączenie przewodowe może odbywać się również za pośrednictwem
ADSL lub
światłowodu SFP, a bezprzewodowe – za pośrednictwem sieci komórkowych (za pomocą
karty SIM,
karty SIM 5G lub modemu zewnętrznego do
3G lub
4G), a także przez Wi-Fi. Oto bardziej szczegółowy opis każdego wariantu:
- Ethernet (RJ45). Klasyczne połączenie przewodowe za pośrednictwem kabla sieciowego za pomocą złącza RJ-45. Znane również jako „LAN”, chociaż to określenie nie jest całkowicie poprawne. W dzisiejszych czasach jest to jeden z najpopularniejszych sposobów przewodowego połączenia z Internetem, jest również szeroko stosowany w sieciach lokalnych. Wynika to z faktu, że prędkość Ethernetu jest w rzeczywistości ograniczona jedynie możliwościami kontrolerów sieciowych; jednocześnie nawet najprostsze moduły obsługują do 100 Mb/s, a w zaawansowanym sprzęcie wartość ta może sięgać nawet 10 Gb/s.
- ADSL. Technologia używana głównie do przewodowych połączeń internetowych za pośrednictwem istnieją
...cych stacjonarnych linii telefonicznych. Jest to jej główna zaleta - można używać gotowych linii bez manipulacji przy układaniu dużej liczby dodatkowych przewodów; natomiast ADSL działa niezależnie od połączeń telefonicznych i nie zakłóca ich działania. Jednocześnie prędkość takiego połączenia jest zauważalnie niższa niż przez Ethernet – nawet w zaawansowanym sprzęcie nie przekracza 24 Mb/s. Ponadto ruch podczas komunikacji ADSL jest rozłożony asymetrycznie: pełną prędkość osiąga się tylko podczas pracy nad odbiorem, prędkość transmisji danych jest znacznie niższa, co stwarza problemy w komunikacji wideo i niektórych innych zadaniach. Tak więc w dzisiejszych czasach ADSL jest stopniowo zastępowany przez bardziej zaawansowane standardy, chociaż ta technologia jest wciąż daleko do całkowitego zniknięcia.
- Wi-Fi. Łączenie się ze źródłem danych zewnętrznych przez Wi-Fi. Z definicji ten format jest używany przez adaptery Wi-Fi (patrz „Typ urządzenia), a także większość urządzeń MESH. (Jeśli jednak zestaw dostawczy systemu MESH obejmuje zarówno węzły, jak i główne urządzenie sterujące dla nich, to wejście WAN może być wskazane dla urządzenia sterującego, a często nie jest to Wi-Fi). Również wprowadzanie tego typu danych może być zapewnione w innych typach urządzeń - w szczególności routerach i punktach dostępowych (np. do pracy w trybie pomostu lub wzmacniacza).
- Modem 3G (USB). Połączenie z Internetem przez sieć komórkową 3G za pomocą oddzielnego modemu zewnętrznego podłączonego do portu USB. Najczęściej chodzi o sieci UMTS (rozwój telefonii komórkowej GSM), najbardziej rozpowszechnione w Europie i przestrzeni poradzieckiej; jednak może być również możliwe użycie modemów do sieci CDMA (technologia EV-DO). Te detale, a także kompatybilność z określonymi modelami modemów, należy wyjaśnić osobno. Jednak w każdym przypadku komunikacja 3G może być dobrym rozwiązaniem w sytuacjach, w których przewodowe połączenie z Internetem jest utrudnione lub niemożliwe – na przykład w sektorze prywatnym. Ponadto niektóre urządzenia Wi-Fi z tą funkcją są wyposażone w autonomiczne zasilacze i mogą być używane nawet „w drodze”. Prędkość przesyłania danych w komunikacji 3G jest zbliżona do szerokopasmowego połączenia przewodowego (od 2 do 70 Mb/s przy normalnym sygnale, w zależności od konkretnej technologii); jest to jednak mniej niż w sieciach 4G (patrz niżej), chociaż zasięg 3G jest większy, a sprzęt dla tego standardu jest tańszy.
- Modem 4G (LTE) (USB). Połączenie z Internetem przez sieć komórkową 4G (LTE) za pomocą oddzielnego modemu zewnętrznego podłączonego do portu USB. Pod względem głównych cech jest podobne do opisanego powyżej połączenia 3G, z tą zmianą, że w tym przypadku wykorzystywane są bardziej zaawansowane sieci – czwartej generacji. Szybkość transmisji danych w takich sieciach sięga około 150 Mb/s; nie są one tak rozpowszechnione jak komunikacja 3G, jednak można się spodziewać, że sytuacja wkrótce się zmieni. Ponadto należy zauważyć, że w Europie i przestrzeni poradzieckiej sieci LTE są zwykle wdrażane w oparciu o sieci 3G UMTS i GSM; więc w przypadku braku pełnego zasięgu 4G modemy dla takich sieci mogą pracować w standardzie 3G, a nawet GSM.
- Karta SIM. Połączenie z Internetem przez sieć komórkową za pomocą karty SIM operatora komórkowego zainstalowanej bezpośrednio w urządzeniu. Konkretny typ obsługiwanych sieci zależy zarówno od możliwości routera, jak i od warunków konkretnego operatora komórkowego; jednak wszystkie takie urządzenia są kompatybilne z co najmniej sieciami 3G, a często 4G. Cechy tych sieci zostały szczegółowo opisane powyżej (można tam również przeczytać o zaletach mobilnego połączenia z Internetem). Ta opcja jest wygodna, ponieważ pozwala obejść się bez osobnego modemu USB - wystarczy kupić kartę SIM, której koszt jest niewielki. Ponadto zastosowanie kart SIM pozytywnie wpływa na kompaktowość i łatwość przenoszenia. Z drugiej strony, wbudowany moduł sieci komórkowej odczuwalnie wpływa na całkowity koszt – a kupując go i tak trzeba będzie za niego zapłacić (podczas gdy modelu z obsługą zewnętrznych modemów nie trzeba kupować od razu z modemem, takie urządzenia zwykle umożliwiają również połączenie przewodowe). Dlatego warto zwrócić uwagę na tę opcję, jeśli początkowo planujesz łączyć się z Internetem za pośrednictwem sieci komórkowych.
- Karta SIM (5G). Możliwość obsługi urządzeń Wi-Fi w szybkich sieciach mobilnych 5G o szczytowej przepustowości do 20 Gb/s dla odbioru i do 10 Gb/s dla transmisji danych. Realizowane za pośrednictwem karty SIM z odpowiednią obsługą 5G. Dany standard pozwala na zmniejszenie poboru mocy w porównaniu z poprzednimi wersjami, a także wykorzystuje szereg kompleksowych rozwiązań mających na celu poprawę niezawodności i ogólnej jakości komunikacji - w szczególności wieloelementowe macierze antenowe (Massive MIMO) oraz technologie kształtowania wiązki (Beamforming).
- SFP (optyka). Połączenie przez kabel światłowodowy o standardzie SFP. Takie połączenie może być realizowane z dużymi prędkościami (mierzonymi w gigabajtach na sekundę), a światłowód w przeciwieństwie do kabla Ethernet jest prawie niewrażliwy na zakłócenia zewnętrzne. Z drugiej strony, obsługa tego standardu nie jest tania, a jego możliwości są zbędne do użytku domowego. Dlatego SFP znajduje się przede wszystkim w profesjonalnych urządzeniach Wi-Fi.Prędkość 4G (LTE)
Prędkość połączenia mobilnego 4G (LTE), obsługiwane przez urządzenie.
Wszystkim współczesnym urządzeniom LTE nadaje się jedna lub druga kategoria (Cat.3,
Cat.4,
Cat.6,
Cat.7,
Cat.9,
Cat.12,
Cat.13,
Cat.15,
Cat.16,
Cat.18,
Cat.19,
Cat.20), co bezpośrednio wpływa na prędkość transmisji danych. W tym rozdziale określa się zarówno tę kategorię, jak i konkretne wskaźniki prędkości, przy czym dla dwóch parametrów - zarówno dla odbioru jak i transmisji. Prędkość transmisji jest zawsze znacznie niższa, lecz ze względu na specyfikę mobilnego dostępu do Internetu szczegół ten zazwyczaj nie jest krytyczny.
Pamiętaj, że sprzęt z różnymi kategoriami prędkości będzie ze sobą całkiem kompatybilny, lecz przepustowość będzie ograniczona przez możliwości wolniejszego urządzenia. Należy również powiedzieć, że w tym punkcie wskazuje się teoretyczne maksimum; wskaźniki praktyczne mogą być zauważalnie niższe (w zależności od jakości zasięgu, obciążenia transmisji, cech konkretnego urządzenia elektronicznego). Niemniej jednak w praktyce modem o wyższej prędkości będzie działał szybciej.
Standardy Wi-Fi
Standardy Wi-Fi obsługiwane przez sprzęt. W dzisiejszych czasach oprócz nowoczesnych standardów
Wi-Fi 4 (802.11n),
Wi-Fi 5 (802.11ac),
Wi-Fi 6 (802.11ax) (jego odmiana
Wi-Fi 6E),
Wi-Fi 7 (802.11be) oraz
WiGig (802.11ad), można również spotkać wsparcie dla wcześniejszych wersji -
Wi- Fi 3 (802.11g), a nawet Wi-Fi 1 (802.11b). Oto bardziej szczegółowy opis każdej z tych wersji:
— Wi-Fi 3 (802.11g). Przestarzały standard, podobnie jak Wi-Fi 1 (802.11b), który odszedł w niepamięć. Był szeroko stosowany przed pojawieniem się Wi-Fi 4, obecnie jest używany głównie jako dodatek do nowszych wersji - w szczególności w celu zapewnienia kompatybilności z przestarzałym i niedrogim sprzętem. Pracuje na częstotliwości 2,4 GHz, maksymalna prędkość wymiany danych to 54 Mb/s.
— Wi-Fi 4 (802.11n). Pierwszy z powszechnie używanych standardów obsługujący 5 GHz; może pracować w tym zakresie lub w klasycznym 2,4 GHz. Warto podkreślić, że niektóre modele sprzętu Wi-Fi na ten standard wykorzystują tylko 5 GHz, dlatego są niekompatybilne z wcześniejszymi wersjami Wi-Fi. Maksymalna prędkość dla Wi-Fi 4 to 600 Mb/s; w nowoczesnych urządzeniach bezprzewodowych standard ten jest bardzo popularny, dopiero niedawno zaczął być wypierany na tej pozycji pr
...zez Wi-Fi 5.
— Wi-Fi 5 (802.11ac). Następca Wi-Fi 4, który ostatecznie przeniósł się na pasmo 5 GHz, co pozytywnie wpłynęło na niezawodność połączenia i prędkość transmisji danych: wynosi do 1,69 Gb/s na antenę i ogólnie do 6,77 Gb/s. Ponadto jest to pierwsza wersja, w której w pełni zaimplementowano technologię Beamforming (więcej informacji można znaleźć w „Funkcje i możliwości”).
— Wi-Fi 6, Wi-Fi 6E (802.11ax). Rozwinięcie Wi-Fi 5, które wprowadziło zarówno wzrost prędkości do 10 Gb/s, jak i szereg ważnych usprawnień. Jedną z najważniejszych nowości jest zastosowanie szerokiego zakresu częstotliwości – od 1 do 7 GHz; to w szczególności pozwala automatycznie wybierać najmniej obciążone pasmo częstotliwości, co pozytywnie wpływa na prędkość i niezawodność połączenia. Jednocześnie urządzenia Wi-Fi 6 mogą działać na klasycznych częstotliwościach 2,4 GHz i 5 GHz, a modyfikacja standardu Wi-Fi 6E może działać na częstotliwościach od 5,9 do 7 GHz; ogólnie uważa się, że urządzenia z obsługą Wi-Fi 6E pracują z częstotliwością 6 GHz, przy pełnej kompatybilności z wcześniejszymi standardami. Dodatkowo w tej wersji wprowadzono pewne usprawnienia dotyczące jednoczesnej pracy kilku urządzeń na tym samym kanale, w szczególności chodzi o technologię OFDMA. Dzięki temu Wi-Fi 6 daje najmniejszy ze współczesnych standardów spadek prędkości przy obciążonym powietrzu, a modyfikacja Wi-Fi 6E działająca na 6 GHz ma najmniej zakłóceń.
— Wi-Fi 7 (802.11be). Ten standard Wi-Fi zaczął być wdrażany w 2023 roku. Dzięki zastosowaniu modulacji 4096-QAM może on osiągać maksymalną teoretyczną prędkość transmisji danych do 46 Gb/s. Wi-Fi 7 obsługuje trzy pasma częstotliwości: 2,4 GHz, 5 GHz i 6 GHz. Maksymalna szerokość pasma standardu została zwiększona ze 160 MHz do 320 MHz — im szerszy kanał, tym więcej danych może on przesłać. Wśród interesujących nowości Wi-Fi 7 odnotowano opracowanie MLO (Multi-Link Operation) — za jego pomocą podłączone urządzenia wymieniają dane przy użyciu kilku kanałów i pasm częstotliwości jednocześnie, co jest szczególnie ważne w przypadku gier VR i online. Technologia Multiple Resource Unit została zaprojektowana w celu zminimalizowania opóźnień w komunikacji, gdy podłączonych jest wiele urządzeń klienckich. Nowy protokół 16x16 MIMO ma również na celu zwiększenie przepustowości przy dużej liczbie jednoczesnych połączeń, podwajając liczbę strumieni przestrzennych w porównaniu do poprzedniego standardu Wi-Fi 6.
— WiGig (802.11ad). Standard Wi-Fi wykorzystujący częstotliwość roboczą 60 GHz; prędkość przesyłania danych może wynosić do 10 Gb/s (w zależności od konkretnej wersji WiGig). Kanał 60 GHz jest znacznie mniej obciążony niż popularniejsze kanały 2,4 GHz i 5 GHz, co pozytywnie wpływa na niezawodność transmisji danych i zmniejsza opóźnienia; to ostatnie jest szczególnie ważne w grach i niektórych innych specjalistycznych zadaniach. Z drugiej strony, zwiększenie częstotliwości znacznie zmniejszyło zasięg połączenia (więcej szczegółów w punkcie „Zakres częstotliwości”), więc w praktyce ten standard nadaje się tylko do komunikacji w tym samym pomieszczeniu.
Należy pamiętać, że w praktyce prędkość przesyłania danych jest zwykle znacznie niższa od teoretycznego maksimum – zwłaszcza, gdy na tym samym kanale pracuje kilka urządzeń Wi-Fi. Warto również zauważyć, że różne standardy są ze sobą wstecznie kompatybilne (z ograniczeniem prędkości dla tego wolniejszego), pod warunkiem, że częstotliwości się pokrywają: na przykład 802.11ac może współpracować z 802.11n, lecz nie z 802.11g.Maks. prędkość przy 2.4 GHz
Maksymalna prędkość zapewniana przez urządzenie przy łączności bezprzewodowej w paśmie 2.4 GHz.
Pasmo to jest wykorzystywane w większości współczesnych standardów Wi-Fi (patrz wyżej) - jako jedno najbardziej z dostępnych lub wręcz jedyne. Teoretyczne maksimum to 600 MB/s. W rzeczywistości Wi-Fi na częstotliwości 2.4 GHz jest wykorzystywane przez dużą liczbę urządzeń klienckich, z czego wynika przeciążenie kanałów transmisji danych. Ponadto liczba anten wpływa na wydajność prędkości sprzętu. Podaną w specyfikacji prędkość można osiągnąć tylko w warunkach idealnych. W praktyce może być ona zauważalnie mniejsza (często kilkukrotnie), zwłaszcza przy obfitości urządzeń bezprzewodowych podłączonych do sprzętu. Dla zrozumienia rzeczywistych możliwości sprzętu Wi-Fi maksymalna prędkość na 2.4 GHz jest podawana w specyfikacji poszczególnych modeli. Jeśli chodzi o liczby, to ze względu na możliwości w paśmie 2.4 GHz współczesny sprzęt umownie dzieli się na modele o prędkościach
do 500 MB/s włącznie i
powyżej 500 MB/s.
Maks. prędkość przy 5 GHz
Maksymalna prędkość, obsługiwana przez urządzenie przy łączności bezprzewodowej w paśmie 5 GHz.
Pasmo to jest wykorzystywane w Wi-Fi 4, Wi-Fi 6 i Wi-Fi 6E jako jedno z dostępnych, w Wi-Fi 5 jako jedyne (patrz „Standardy Wi-Fi”). Prędkość maksymalna podawana jest w specyfikacji w celu zaznaczenia rzeczywistych możliwości konkretnego sprzętu - mogą być one zauważalnie skromniejsze od ogólnych możliwości standardu. Poza tym wszystko zależy od generacji Wi-Fi. Na przykład urządzenia obsługujące Wi-Fi 5 mogą teoretycznie przesyłać do 6928 Mb/s (przy użyciu ośmiu anten), a Wi-Fi 6 do 9607 Mb/s (przy użyciu tychże ośmiu strumieni przestrzennych). Maksymalna możliwa prędkość łączności jest osiągana w określonych warunkach i nie każdy model sprzętu Wi-Fi w pełni je spełnia. Konkretne liczby są umownie podzielone na kilka grup: wartość
do 500 MB/s jest dość skromna, wiele urządzeń obsługuje prędkości w zakresie
500 - 1000 MB/s, wskaźniki
1 - 2 GB/s można zaliczyć do średnich wartości, a najbardziej zaawansowane modele w swojej klasie zapewniają prędkość wymiany danych na poziomie
ponad 2 GB/s.
WAN
Port WAN charakteryzuje zdolność urządzenia do odbioru sygnału przewodowego. Spotyka się modele z jednym portem bądź
dwoma portami WAN, a w rzadkich przypadkach może to być większa liczba podłączanych dostawców. Taka rozszerzona liczba złączy WAN wpływa na koszt i w związku z tym występuje częściej wśród routerów przeznaczonych do zastosowań profesjonalnych.
Jeśli chodzi o prędkość, przy wyborze urządzenia priorytetem jest prędkość wyjściowego portu LAN lub Wi-Fi. Natomiast szybsze porty WAN (
1 Gb/s,
2.5 Gb/s,
5 Gb/s,
10 Gb/s) pozwalają na rozłożenie obciążenia na kilka wyjść jednocześnie bez obniżania wskaźników szybkości, jak to może mieć miejsce w przypadku
portu WAN 100 Mb/s.
Porty WAN/LAN z opcją ponownego przypisania
Obecność w konstrukcji urządzenia
portu WAN/LAN, który można ponownie przypisać i który może współpracować zarówno z siecią zewnętrzną (WAN), jak i lokalną (LAN). Takie rozwiązanie pozwala zmniejszyć całkowitą liczbę portów, a jednocześnie rozszerzyć możliwości urządzenia i dostosować je do swoich potrzeb.
Liczba portów USB 2.0
Liczba
portów USB 2.0 przewidzianych w konstrukcji urządzenia.
USB pełni w tym przypadku rolę uniwersalnego interfejsu do podłączania urządzeń peryferyjnych do routera. Obsługiwane urządzenia USB i sposób ich używania mogą się różnić. Przykłady obejmują pracę z dyskiem flash pełniącym rolę urządzenia magazynującego do pracy w trybie FTP lub w trybie serwera plików (patrz „Funkcje/Możliwości”), łączenie się z drukarką w
trybie serwera wydruku (patrz ibid.), podłączanie modemu 3G (patrz „Wejście danych (port WAN)”) itp.
Mianowicie USB 2.0 umożliwia przesyłanie danych z prędkością do 480 Mb/s. To zauważalnie mniej niż w bardziej zaawansowanych standardach (począwszy od opisanego poniżej USB 3.2 Gen1), a zasilanie takich złączy jest niskie. Jednak nawet takie cechy często wystarczają, biorąc pod uwagę specyfikę korzystania z urządzeń Wi-Fi. Dodatkowo do portu USB 2.0 można podłączyć peryferia do nowszych wersji - najważniejsze, żeby zasilanie było wystarczające. Dlatego chociaż ten standard jest uważany za przestarzały, nadal jest szeroko stosowany w nowoczesnym sprzęcie bezprzewodowym. Istnieją nawet modele, które zapewniają
2 lub nawet więcej portów USB 2.0; pozwala to na jednoczesne korzystanie z kilku urządzeń zewnętrznych - na przykład modemu 3G i pendrive'a.
Liczba USB 3.2 Gen1
Liczba
portów USB 3.2 Gen1 przewidzianych w konstrukcji urządzenia.
USB pełni w tym przypadku rolę uniwersalnego interfejsu do podłączania urządzeń peryferyjnych do routera. Obsługiwane urządzenia USB i sposób ich używania mogą się różnić. Przykłady obejmują pracę z dyskiem flash pełniącym rolę urządzenia magazynującego do pracy w trybie FTP lub w trybie serwera plików (patrz „Funkcje/Możliwości”), łączenie się z drukarką w trybie serwera wydruku (patrz ibid.), podłączanie modemu 3G (patrz „Wejście danych (port WAN)”) itp.
Mianowicie wersja USB 3.2 Gen1 (wcześniej znana jako USB 3.0 i USB 3.1 Gen1) jest bezpośrednim następcą USB 2.0, który w szczególności prezentował 10-krotnie zwiększoną (do 4,8 Gb/s) maksymalną prędkość przesyłania danych i zwiększoną moc zasilania. Co prawda, pomimo ogólnej popularności standard ten jest nadal stosunkowo rzadki w urządzeniach Wi-Fi - USB 2.0 wystarcza do wielu zadań. Jednak sytuacja stopniowo się zmienia; a wśród zaawansowanych urządzeń, takich jak routery do gier, istnieją rozwiązania z
2 lub więcej portami USB 3.2 Gen1.