Metody spawania
Do podstawowych rodzajów spawania należą:
ręczne łukowe (MMA),
półautomatyczne (MIG/MAG),
argonowe (TIG), punktowe (SPOT),
punktowe (STUD) oraz
plazmowe (PLASMA).
- Ręczne łukowe (MMA). Spawanie łukiem elektrycznym i elektrodą topliwą ze specjalną powłoką. Podawanie i przesuwanie elektrody jest wykonywane przez spawacza ręcznie. Nie przewidziano doprowadzenia gazu osłonowego, ochronę jeziorka spawalniczego przed powietrzem można przeprowadzić dzięki spalaniu powłoki nałożonej na elektrodę. Ta technologia spawania pozwala na zastosowanie najprostszego sprzętu, jest niewymagająca do jakości prądu i konstrukcji spawarki. Z drugiej strony jakość uzyskanej spoiny silnie zależy od umiejętności spawacza, wydajność procesu jest stosunkowo niska, a technologia ta jest słabo przystosowana do metali nieżelaznych - jej głównym celem jest spawanie stali i żeliwa .
- Półautomatyczne (MIG/MAG). Częściowo zautomatyzowane spawanie gazem obojętnym (MIG) lub aktywnym (MAG). Gaz dostaje się bezpośrednio do miejsca spawania przez palnik, a gdy łuk się pali, tworzy powłokę ochronną, która osłania jeziorko spawalnicze przed działaniem powietrza. A termin „półautomatyczne” oznacza, że materiał wypełniający w postaci cienkiego drutu jest automatycznie dostarczany do miejsca pr
...acy (ale trzeba ręcznie przesunąć palnik). Wybór między gazem obojętnym a aktywnym dokonywany jest w zależności od materiałów, które mają być spawane – na przykład pierwszy wariant jest zwykle stosowany do metali nieżelaznych, drugi do stali. Takie spawanie zapewnia znacznie lepszą jakość spoin niż spawanie ręczne, a także zwiększa wygodę i szybkość pracy.
- Łuk argonowy (TIG). Spawanie ręczne elektrodą nietopliwą w środowisku gazu obojętnego. Przy takim spawaniu łuk elektryczny topi tylko krawędzie łączonych części, a z nich powstaje ostateczny szew, bez użycia materiału elektrody (w niektórych przypadkach mogą być wykorzystywane dodatki w postaci kawałków metalu o odpowiednim kształcie). Aby chronić szew przed działaniem powietrza, do nagrzewanego miejsca dostarczany jest gaz ochronny, zwykle argon. Spawanie TIG doskonale nadaje się do stali nierdzewnej oraz stopów miedzi i aluminium. Pozwala stworzyć dokładniejszy szew niż przy użyciu MMA i zapewnia bardziej precyzyjną kontrolę procesu. Z drugiej strony technologia ta jest dość wymagająca pod względem umiejętności spawacza, a szybkość pracy jest stosunkowo niska.
- Punktowe (SPOT). Spawanie elektryczne, wykonywane dzięki punktowemu działaniu wysokich prądów. Służy do łączenia cienkich blach (głównie do 3 mm), a także do mocowania kołków i szpilek do płaskiej podstawy. Podczas łączenia blach dwie elektrody o stosunkowo małej średnicy dociskają detale ciasno do siebie, po czym przepływa przez nie prąd rzędu kilku kiloamperów; metal w miejscu styku jest podgrzewany do temperatury topnienia, co zapewnia połączenie. Podczas mocowania kołków i szpilek sama szpilka pełni rolę jednej z elektrod, a płaska podstawa pełni rolę drugiej elektrody. Spawanie typu SPOT jest bardzo popularne w produkcji samochodów i serwisie samochodowym: w ten sposób łączy się niektóre elementy karoserii, a także takie spawanie sprawdza się przy prostowaniu. Występują jednostronne oraz dwustronne. Pierwsza wykorzystuje jedną elektrodę, która jest dociskana siłą do przedmiotu obrabianego. Główną zaletą tej odmiany jest możliwość pracy z powierzchniami dostępnymi tylko z jednej strony - np. drzwiami samochodowymi. Właściwie jednym z głównych obszarów zastosowania jednostronnego spawania SPOT jest serwis samochodowy, w szczególności prostowanie karoserii i innych powierzchni samochodowych. Z kolei spawanie (dwustronne) polega na użyciu pary elektrod, ściskających miejsce połączenia z obu stron, jak imadło. Ten wariant lepiej nadaje się do pracy z grubymi elementami lub tam, gdzie wymagana jest wysoka niezawodność połączenia - dzięki opisanemu ściskaniu łatwiej jest zapewnić wymaganą głębokość jeziorka spawalniczego. Z drugiej strony, aby go użyć, niezbędny jest dostęp do obu stron przedmiotu obrabianego. Zwróć uwagę, że niektóre modele spawarek mogą działać zgodnie z jednym ze schematów; to sprawia, że urządzenie jest bardzo wszechstronne, lecz może rzutować na jego cenę.
- Punktowe (STUD). Technologia spawania punktowego z wykorzystaniem łuku podnoszącego (ciągnącego). Jest stosowana głównie do połączeń typu płaska podstawa + kołek. Sam proces spawania przebiega w następujący sposób: kołek dociskany jest do podstawy; prąd się włącza; kołek podnosi się; między nim a podstawą zapala się łuk, który topi powierzchnię podstawy; kołek jest opuszczany do stopu; prąd jest wyłączany, metal krzepnie. Spawanie STUD polega na zastosowaniu zmechanizowanych uchwytów spawalniczych ze sprężyną lub systemem hydraulicznym do podnoszenia i opuszczania kołka, a gaz obojętny lub topnik służy do ochrony połączenia przed powietrzem atmosferycznym.
- Cięcie plazmowe (PLAZMA). Cięcie metalu strumieniem nagrzanej plazmy - silnie zjonizowanego gazu. W tym celu do miejsca pracy dostarczany jest gaz (obojętny lub aktywny), który pod wpływem łuku elektrycznego jest jonizowany, podgrzewany i przyspieszany. Temperatura plazmy może przekraczać 10 000 °C, a prędkość - 1000 m/s, co umożliwia pracę z prawie wszystkimi metalami i stopami, w tym ogniotrwałymi. Przy tym, cięcie jest szybkie, a nacięcie jest czyste i estetyczne, a jego głębokość może wynosić do 200 mm. Główną wadą cięcia plazmowego jest wysoki koszt sprzętu.Min. napięcie wejściowe
Minimalne rzeczywiste napięcie wejściowe, przy którym spawarka pozostaje sprawna.
Takie informacje są przydatne przede wszystkim do pracy w niestabilnych sieciach, gdzie napięcie ma tendencję do silnego „zapadania się”, a także z autonomicznych źródeł zasilania (na przykład generatorów), które również mogą wytwarzać napięcie poniżej nominalnego.
Pobór mocy
Maksymalna moc pobierana przez spawarkę podczas pracy, wyrażona w kilowatach (kW), czyli tysiącach W. Ponadto można użyć oznaczenia w kilowoltoamperach (kVA), patrz poniżej.
Im wyższy pobór mocy, tym większy prąd może dostarczyć jednostka i tym lepiej nadaje się ona do pracy z grubymi częściami. Dla różnych materiałów o różnych grubościach istnieją zalecenia dotyczące natężenia prądu, można je znaleźć w specjalistycznych źródłach. Znając te zalecenia i napięcie w obwodzie otwartym (patrz poniżej) dla wybranego rodzaju spawania, możesz użyć specjalnych formuł do obliczenia minimalnej wymaganej mocy spawarki. Należy również pamiętać, że duża moc powoduje odpowiednie obciążenie okablowania i może wymagać podłączenia bezpośrednio do tablicy rozdzielczej.
Jeśli chodzi o różnicę między watami i woltamperami, fizyczne znaczenie obu jednostek jest podobne - prąd pomnożony przez napięcie. Jednak reprezentują one różne parametry. W woltamperach wskazuje się całkowite pobór mocy - zarówno aktywne (przeznaczane na pracę i nagrzewanie poszczególnych części), jak i bierne (przeznaczane na straty w cewkach i kondensatorach). Wygodniej jest użyć tej wartości do obliczenia obciążenia sieci energetycznej. W watach rejestrowana jest tylko moc czynna, przy użyciu tych liczb wygodnie jest obliczyć praktyczne możliwości spawarki.
Pobór mocy
Pobór mocy spawarki wyrażony w kilowoltoamperach.
kVA to jednostka mocy używana w spawarkach wraz z bardziej tradycyjnymi kilowatami. Fizyczne znaczenie obu jednostek jest takie samo - prąd pomnożony przez napięcie; jednak reprezentują one różne parametry. Tak więc w kilowatach zapisywana jest tylko część całkowitego zużycia energii - moc czynna (jest przeznaczana wydajność pracy i straty z powodu nagrzewania poszczególnych części); wskaźnik ten jest wygodny do obliczania praktycznych możliwości aparatu. Natomiast kilowoltoampery oznaczają całkowite pobór mocy - uwzględniają również moc bierną (w przypadku pracy obwodów prądu przemiennego jest przeznaczana na straty w cewkach i kondensatorach). Dane te są przydatne do obliczania całkowitego obciążenia sieci lub innego źródła zasilania.
Całkowity pobór mocy w kVA zawsze będzie wyższy niż moc w kW. Jednak niektórzy producenci są podstępni i wskazują pełną moc nie przy pełnym, lecz przy częściowym (na przykład połowicznym) obciążeniu. Sprawia to wrażenie oszczędności, co jest błędne z technicznego punktu widzenia. Ze względu na stosunek zużycia energii, moc czynna w kW jest najczęściej o 20-30% niższa od mocy całkowitej w kVA. Tak więc, całkiem możliwe jest oszacowanie charakterystyk roboczych urządzenia na podstawie kilowoltoamperów.
Jeśli chodzi o konkretne wartości, to w najskromniejszych modelach
nie przekraczają one 3 kVA. Wskaźnik
do 5 kVA jest uważany za niski,
do 7 kVA - średni, a w najmocniejszych jednostkach pobór mocy może osiągnąć
10 kVA lub nawet
więcej.
Napięcie obwodu otwartego
Napięcie podawane przez spawarkę na elektrody. Jak sama nazwa wskazuje, mierzy się je bez obciążenia – tj. gdy elektrody są odłączone i nie płynie między nimi prąd. Wynika to z faktu, że przy dużym natężeniu prądu, charakterystycznego dla spawania elektrycznego, rzeczywiste napięcie na elektrodach gwałtownie spada, co nie pozwala na obiektywną ocenę charakterystyki spawarki.
W zależności od charakterystyki urządzenia (patrz "Typ") i rodzaju pracy (patrz "Typ spawania") stosowane jest różne napięcie obwodu otwartego. Dla przykładu, w przypadku transformatorów spawalniczych parametr ten wynosi około 45 - 55 V (choć czasem mogą to być również modele o wyższym napięciu), dla falowników może on dochodzić do 90 V, a dla spawania półautomatycznego MIG/MAG zwykle napięcie wyższe niż 40 V nie jest wymagane. Ponadto optymalne wartości zależą od rodzaju użytych elektrod. Bardziej szczegółowe informacje można znaleźć w specjalnych źródłach; tutaj zauważamy, że im wyższe napięcie w obwodzie otwartym, tym łatwiej zwykle zapalić łuk i tym bardziej stabilne jest samo wyładowanie.
Należy również pamiętać, że w przypadku urządzeń z funkcją VRD (patrz "Cechy dodatkowe") parametr ten określa napięcie standardowe bez redukcji przez VRD.
Maks. prąd spawania
Maksymalny prąd, jaki spawarka jest w stanie dostarczyć przez elektrody podczas pracy. Ogólnie rzecz biorąc, im wyższy wskaźnik ten, tym grubsze elektrody może używać urządzenie i tym większa jest grubość części, z którymi może ono pracować. Oczywiście nie zawsze ma sens ściganie wysokich prądów - bardziej prawdopodobne jest, że uszkodzą one delikatne detale. Jeśli jednak masz do czynienia z pracami na dużą skalę i dużą grubością spawanych materiałów, po prostu nie możesz obejść się bez urządzenia o odpowiednich parametrach. Optymalne prądy spawania w zależności od materiałów, rodzaju pracy (patrz „Rodzaj spawania”), rodzaju elektrod itp. można określić za pomocą specjalnych tabel. Jeśli chodzi o konkretne wartości, to w „najsłabszych” modelach maksymalny prąd
nie dochodzi nawet do 100 A, w najmocniejszych może przekraczać
225 A, a nawet
250 A.Częstotliwość przełączania
Częstotliwość przełączania dopuszczalna dla spawarki.
Prawie wszystkie nowoczesne spawarki wymagają przerw w pracy – na chłodzenie i ogólną „regenerację”. Częstotliwość przełączania wskazuje, jaki procent całkowitego cyklu pracy można wykorzystać bezpośrednio do pracy. W danym przypadku standardowy cykl trwa zwykle 10 minut. Na przykład urządzenie o częstotliwości przełączania
30% będzie mogło pracować nieprzerwanie przez nie więcej niż 3 minuty, po czym będzie potrzebowało co najmniej 7 minut przerwy. Jednak niektóre modele używają cyklu 5-minutowego; te niuanse należy wyjaśnić sięgając do instrukcji.
Ogólnie rzecz biorąc, wysoka częstotliwość jest wymagana głównie do pracy zawodowej o dużej objętości; przy stosunkowo prostym używaniu parametr ten nie odgrywa decydującej roli, zwłaszcza że w trakcie pracy i tak trzeba robić przerwy. Pod względem konkretnych wartości, wspomniane 30% to bardzo skromna liczba, typowa głównie dla urządzeń klasy podstawowej. Niską jest również wartość
30-50%; najnowocześniejsze urządzenia mieszczą się w przedziale
50 - 70%, a najbardziej "wytrzymałe" modele zapewniają częstotliwość
ponad 70%.
Maks. średnica elektrody
Maksymalna średnica elektrody, jaką można użyć w spawarce. W zależności od grubości detali, materiału, z którego są one wykonane, rodzaju spawania (patrz wyżej) itp. optymalna średnica elektrody będzie się różnić; istnieją specjalne tabele, które pozwalają określić tę wartość. W przypadku grubszych materiałów może być wymagana większa średnica. W związku z tym, przed zakupem należy upewnić się, że wybrany model jest w stanie pracować ze wszystkimi wymaganymi średnicami elektrod.
We współczesnych spawarkach średnicę elektrody
1 mm lub mniej uważa się za bardzo małą,
2 mm - małą,
3 mm i
4 mm - średnią, a w mocnych modelach produkcyjnych stosuje się
elektrody 5 mm lub
więcej.
Maks. grubość cięcia (PLASMA)
Maksymalna grubość materiału, jaką maszyna może przeciąć w trybie cięcia plazmowego. Aby uzyskać szczegółowe informacje na temat tego trybu, patrz "Rodzaj spawania". Należy pamiętać, że maksymalna grubość jest często podawana dla pewnego materiału o średniej wytrzymałości; w przypadku materiałów ogniotrwałych wydajność może być nieco niższa (przynajmniej przecięcie zajmie więcej czasu).