Polska
Katalog   /   Sprzęt i narzędzia ogrodnicze   /   Narzędzia i warsztat   /   Spawarki i przecinarki

Porównanie Kentavr MIG-350 Digit All vs Kentavr SPAV-300 Digit Mini

Dodaj do porównania
Kentavr MIG-350 Digit All
Kentavr SPAV-300 Digit Mini
Kentavr MIG-350 Digit AllKentavr SPAV-300 Digit Mini
Produkt jest niedostępny
od 587 zł
Produkt jest niedostępny
TOP sprzedawcy
Rodzajinwerterowy półautomat spawalniczyinwerterowy półautomat spawalniczy
Metody spawania
MMA
MIG/MAG
TIG
MMA
MIG/MAG
 
Specyfikacja
Prąd spawaniastałystały
Napięcie wejściowe230 V230 V
Pobór mocy8.5 kW
Pobór mocy11.9 kVA
Napięcie obwodu otwartego72 V60 V
Min. prąd spawania
20 А /MMA; MIG: 40 A/
30 А
Maks. prąd spawania300 А300 А
Maks. prąd spawania (cykl pracy 100%)232 А240 А
Częstotliwość przełączania60 %60 %
Maks. średnica elektrody5 mm5 mm
Min. średnica drutu0.6 mm0.6 mm
Maks. średnica drutu1 mm1 mm
Cechy dodatkowe
funkcja Hot Start
funkcja Anti-Stick
sterowanie synergiczne
wyświetlacz cyfrowy
funkcja Hot Start
funkcja Anti-Stick
 
 
Umiejscowienie szpuliwewnątrzwewnątrz
Uchwyt spawalniczy (MIG/MAG)odłączanystały
Dane ogólne
Klasa ochrony (IP)2121
Klasa izolacjiFF
Długość przewodu uchwytu elektrodowego2 m
Przewód masowy1.5 m
Wymiary (WxSxG)390x270x490 mm
Waga8.7 kg7.5 kg
Data dodania do E-Katalogwrzesień 2021kwiecień 2021

Metody spawania

Do podstawowych rodzajów spawania należą: ręczne łukowe (MMA), półautomatyczne (MIG/MAG), argonowe (TIG), punktowe (SPOT), punktowe (STUD) oraz plazmowe (PLASMA).

- Ręczne łukowe (MMA). Spawanie łukiem elektrycznym i elektrodą topliwą ze specjalną powłoką. Podawanie i przesuwanie elektrody jest wykonywane przez spawacza ręcznie. Nie przewidziano doprowadzenia gazu osłonowego, ochronę jeziorka spawalniczego przed powietrzem można przeprowadzić dzięki spalaniu powłoki nałożonej na elektrodę. Ta technologia spawania pozwala na zastosowanie najprostszego sprzętu, jest niewymagająca do jakości prądu i konstrukcji spawarki. Z drugiej strony jakość uzyskanej spoiny silnie zależy od umiejętności spawacza, wydajność procesu jest stosunkowo niska, a technologia ta jest słabo przystosowana do metali nieżelaznych - jej głównym celem jest spawanie stali i żeliwa .

- Półautomatyczne (MIG/MAG). Częściowo zautomatyzowane spawanie gazem obojętnym (MIG) lub aktywnym (MAG). Gaz dostaje się bezpośrednio do miejsca spawania przez palnik, a gdy łuk się pali, tworzy powłokę ochronną, która osłania jeziorko spawalnicze przed działaniem powietrza. A termin „półautomatyczne” oznacza, że materiał wypełniający w postaci cienkiego drutu jest automatycznie dostarczany do miejsca pr...acy (ale trzeba ręcznie przesunąć palnik). Wybór między gazem obojętnym a aktywnym dokonywany jest w zależności od materiałów, które mają być spawane – na przykład pierwszy wariant jest zwykle stosowany do metali nieżelaznych, drugi do stali. Takie spawanie zapewnia znacznie lepszą jakość spoin niż spawanie ręczne, a także zwiększa wygodę i szybkość pracy.

- Łuk argonowy (TIG). Spawanie ręczne elektrodą nietopliwą w środowisku gazu obojętnego. Przy takim spawaniu łuk elektryczny topi tylko krawędzie łączonych części, a z nich powstaje ostateczny szew, bez użycia materiału elektrody (w niektórych przypadkach mogą być wykorzystywane dodatki w postaci kawałków metalu o odpowiednim kształcie). Aby chronić szew przed działaniem powietrza, do nagrzewanego miejsca dostarczany jest gaz ochronny, zwykle argon. Spawanie TIG doskonale nadaje się do stali nierdzewnej oraz stopów miedzi i aluminium. Pozwala stworzyć dokładniejszy szew niż przy użyciu MMA i zapewnia bardziej precyzyjną kontrolę procesu. Z drugiej strony technologia ta jest dość wymagająca pod względem umiejętności spawacza, a szybkość pracy jest stosunkowo niska.

- Punktowe (SPOT). Spawanie elektryczne, wykonywane dzięki punktowemu działaniu wysokich prądów. Służy do łączenia cienkich blach (głównie do 3 mm), a także do mocowania kołków i szpilek do płaskiej podstawy. Podczas łączenia blach dwie elektrody o stosunkowo małej średnicy dociskają detale ciasno do siebie, po czym przepływa przez nie prąd rzędu kilku kiloamperów; metal w miejscu styku jest podgrzewany do temperatury topnienia, co zapewnia połączenie. Podczas mocowania kołków i szpilek sama szpilka pełni rolę jednej z elektrod, a płaska podstawa pełni rolę drugiej elektrody. Spawanie typu SPOT jest bardzo popularne w produkcji samochodów i serwisie samochodowym: w ten sposób łączy się niektóre elementy karoserii, a także takie spawanie sprawdza się przy prostowaniu. Występują jednostronne oraz dwustronne. Pierwsza wykorzystuje jedną elektrodę, która jest dociskana siłą do przedmiotu obrabianego. Główną zaletą tej odmiany jest możliwość pracy z powierzchniami dostępnymi tylko z jednej strony - np. drzwiami samochodowymi. Właściwie jednym z głównych obszarów zastosowania jednostronnego spawania SPOT jest serwis samochodowy, w szczególności prostowanie karoserii i innych powierzchni samochodowych. Z kolei spawanie (dwustronne) polega na użyciu pary elektrod, ściskających miejsce połączenia z obu stron, jak imadło. Ten wariant lepiej nadaje się do pracy z grubymi elementami lub tam, gdzie wymagana jest wysoka niezawodność połączenia - dzięki opisanemu ściskaniu łatwiej jest zapewnić wymaganą głębokość jeziorka spawalniczego. Z drugiej strony, aby go użyć, niezbędny jest dostęp do obu stron przedmiotu obrabianego. Zwróć uwagę, że niektóre modele spawarek mogą działać zgodnie z jednym ze schematów; to sprawia, że ​​urządzenie jest bardzo wszechstronne, lecz może rzutować na jego cenę.

- Punktowe (STUD). Technologia spawania punktowego z wykorzystaniem łuku podnoszącego (ciągnącego). Jest stosowana głównie do połączeń typu płaska podstawa + kołek. Sam proces spawania przebiega w następujący sposób: kołek dociskany jest do podstawy; prąd się włącza; kołek podnosi się; między nim a podstawą zapala się łuk, który topi powierzchnię podstawy; kołek jest opuszczany do stopu; prąd jest wyłączany, metal krzepnie. Spawanie STUD polega na zastosowaniu zmechanizowanych uchwytów spawalniczych ze sprężyną lub systemem hydraulicznym do podnoszenia i opuszczania kołka, a gaz obojętny lub topnik służy do ochrony połączenia przed powietrzem atmosferycznym.

- Cięcie plazmowe (PLAZMA). Cięcie metalu strumieniem nagrzanej plazmy - silnie zjonizowanego gazu. W tym celu do miejsca pracy dostarczany jest gaz (obojętny lub aktywny), który pod wpływem łuku elektrycznego jest jonizowany, podgrzewany i przyspieszany. Temperatura plazmy może przekraczać 10 000 °C, a prędkość - 1000 m/s, co umożliwia pracę z prawie wszystkimi metalami i stopami, w tym ogniotrwałymi. Przy tym, cięcie jest szybkie, a nacięcie jest czyste i estetyczne, a jego głębokość może wynosić do 200 mm. Główną wadą cięcia plazmowego jest wysoki koszt sprzętu.

Pobór mocy

Maksymalna moc pobierana przez spawarkę podczas pracy, wyrażona w kilowatach (kW), czyli tysiącach W. Ponadto można użyć oznaczenia w kilowoltoamperach (kVA), patrz poniżej.

Im wyższy pobór mocy, tym większy prąd może dostarczyć jednostka i tym lepiej nadaje się ona do pracy z grubymi częściami. Dla różnych materiałów o różnych grubościach istnieją zalecenia dotyczące natężenia prądu, można je znaleźć w specjalistycznych źródłach. Znając te zalecenia i napięcie w obwodzie otwartym (patrz poniżej) dla wybranego rodzaju spawania, możesz użyć specjalnych formuł do obliczenia minimalnej wymaganej mocy spawarki. Należy również pamiętać, że duża moc powoduje odpowiednie obciążenie okablowania i może wymagać podłączenia bezpośrednio do tablicy rozdzielczej.

Jeśli chodzi o różnicę między watami i woltamperami, fizyczne znaczenie obu jednostek jest podobne - prąd pomnożony przez napięcie. Jednak reprezentują one różne parametry. W woltamperach wskazuje się całkowite pobór mocy - zarówno aktywne (przeznaczane na pracę i nagrzewanie poszczególnych części), jak i bierne (przeznaczane na straty w cewkach i kondensatorach). Wygodniej jest użyć tej wartości do obliczenia obciążenia sieci energetycznej. W watach rejestrowana jest tylko moc czynna, przy użyciu tych liczb wygodnie jest obliczyć praktyczne możliwości spawarki.

Pobór mocy

Pobór mocy spawarki wyrażony w kilowoltoamperach.

kVA to jednostka mocy używana w spawarkach wraz z bardziej tradycyjnymi kilowatami. Fizyczne znaczenie obu jednostek jest takie samo - prąd pomnożony przez napięcie; jednak reprezentują one różne parametry. Tak więc w kilowatach zapisywana jest tylko część całkowitego zużycia energii - moc czynna (jest przeznaczana wydajność pracy i straty z powodu nagrzewania poszczególnych części); wskaźnik ten jest wygodny do obliczania praktycznych możliwości aparatu. Natomiast kilowoltoampery oznaczają całkowite pobór mocy - uwzględniają również moc bierną (w przypadku pracy obwodów prądu przemiennego jest przeznaczana na straty w cewkach i kondensatorach). Dane te są przydatne do obliczania całkowitego obciążenia sieci lub innego źródła zasilania.

Całkowity pobór mocy w kVA zawsze będzie wyższy niż moc w kW. Jednak niektórzy producenci są podstępni i wskazują pełną moc nie przy pełnym, lecz przy częściowym (na przykład połowicznym) obciążeniu. Sprawia to wrażenie oszczędności, co jest błędne z technicznego punktu widzenia. Ze względu na stosunek zużycia energii, moc czynna w kW jest najczęściej o 20-30% niższa od mocy całkowitej w kVA. Tak więc, całkiem możliwe jest oszacowanie charakterystyk roboczych urządzenia na podstawie kilowoltoamperów.

Jeśli chodzi o konkretne wartości, to w najskromniejszych modelach nie przekraczają one 3 kVA. Wskaźnik do 5 kVA jest uważany za niski, do 7 kVA - średni, a w najmocniejszych jednostkach pobór mocy może osiągnąć 10 kVA lub nawet więcej.

Napięcie obwodu otwartego

Napięcie podawane przez spawarkę na elektrody. Jak sama nazwa wskazuje, mierzy się je bez obciążenia – tj. gdy elektrody są odłączone i nie płynie między nimi prąd. Wynika to z faktu, że przy dużym natężeniu prądu, charakterystycznego dla spawania elektrycznego, rzeczywiste napięcie na elektrodach gwałtownie spada, co nie pozwala na obiektywną ocenę charakterystyki spawarki.

W zależności od charakterystyki urządzenia (patrz "Typ") i rodzaju pracy (patrz "Typ spawania") stosowane jest różne napięcie obwodu otwartego. Dla przykładu, w przypadku transformatorów spawalniczych parametr ten wynosi około 45 - 55 V (choć czasem mogą to być również modele o wyższym napięciu), dla falowników może on dochodzić do 90 V, a dla spawania półautomatycznego MIG/MAG zwykle napięcie wyższe niż 40 V nie jest wymagane. Ponadto optymalne wartości zależą od rodzaju użytych elektrod. Bardziej szczegółowe informacje można znaleźć w specjalnych źródłach; tutaj zauważamy, że im wyższe napięcie w obwodzie otwartym, tym łatwiej zwykle zapalić łuk i tym bardziej stabilne jest samo wyładowanie.

Należy również pamiętać, że w przypadku urządzeń z funkcją VRD (patrz "Cechy dodatkowe") parametr ten określa napięcie standardowe bez redukcji przez VRD.

Min. prąd spawania

Minimalny prąd, jaki urządzenie jest w stanie dostarczyć przez elektrody podczas pracy. Dla różnych materiałów, różnych grubości spawanych części i różnych rodzajów samego spawania, optymalny prąd spawania będzie się różnił; istnieją specjalne tabele do określenia tej wartości. Ogólna zasada jest taka, że duży prąd nie zawsze jest użyteczny: daje on grubszy szew, przy pracy z cienkimi materiałami można przetopić miejsce styku zamiast łączyć części, nie wspominając o niepotrzebnym zużyciu energii. Dlatego, jeśli musisz pracować z częściami o małej grubości (2-3 mm), przed wyborem spawarki warto upewnić się, że jest ona w stanie dostarczyć wymagany prąd "bez wybryków'.

Maks. prąd spawania (cykl pracy 100%)

Najwyższy prąd spawania, przy którym urządzenie może pracować z częstotliwością 100%.

Więcej informacji na temat częstotliwości włączenia (PV) znajduje się poniżej. Przypomnijmy tutaj, że „100% cykl pracy” oznacza pracę ciągłą, bez przestojów na chłodzenie. Zatem maksymalny prąd spawania przy 100% cyklu pracy jest najwyższym prądem, przy którym maszyna może być używana bez przerwy. Z reguły ten prąd jest znacznie poniżej maksimum.

Cechy dodatkowe

- Gorący start (Hot Start). Funkcja ułatwiająca zajarzenie łuku: gdy elektroda dotknie miejsca spawania, prąd spawania na krótko wzrasta, a po przejściu spawarki w tryb wraca do parametrów standardowych.

- Regulacja dynamiki łuku (Arc Force). Spawarki z tą funkcją są w stanie zwiększyć prąd spawania przy krytycznym zmniejszeniem odległości między elektrodą a spawanymi częściami. Zwiększa to szybkość topienia elektrody i głębokość jeziorka spawalniczego, co zapobiega przywieraniu.

- Ochrona przed przywieraniem (Anti-Stick). W danym przypadku chodzi o środek ochronny na wypadek, gdyby nie udało się uniknąć przywierania elektrody: automatyzacja spawarki znacznie zmniejsza prąd spawania (lub całkowicie go wyłącza), co ułatwia odłączenie elektrody, a poza tym - pozwala uniknąć niepotrzebnego zużycia energii i przegrzewania urządzenia.

- Zmniejszenie napięcia x. x. (VRD) . Funkcja ta służy do znacznego zmniejszenia napięcia obwodu otwartego aparatu. Gdy VRD jest włączone, na otwarte elektrody nie jest dostarczane standardowe napięcie kilkudziesięciu lub nawet setek woltów, lecz tylko 9 - 12 V. W takim przypadku parametry pracy są przywracane automatycznie - gdy elektroda dotyka przedmiotu obrabianego i występuje wysoki prąd; a po zgaszeniu łuku napięcie ponownie spada do wartości minimalnych. Ten rodzaj pracy ma...dwie główne zalety. Po pierwsze zapewnia dodatkowe bezpieczeństwo: w szczególności zamknięcie styków dłonią lub inną częścią ciała nie prowadzi do poważnego porażenia prądem, a także zmniejsza się ryzyko takiego zranienia w warunkach dużej wilgotności. Po drugie, obniżone napięcie pomaga oszczędzać energię.

- Spawanie impulsowe. Przez to rozumie się spawanie łukowe w środowisku gazu osłonowego (MIG/MAG lub TIG), przeprowadzane w tzw. trybie impulsowym. Przy takim formacie pracy główny prąd spawania, stosunkowo niski, jest uzupełniany impulsami o dużej sile (7-10 razy wyższej niż prąd tła), które następują z częstotliwością kilkudziesięciu na sekundę. Istnieją również różne modyfikacje trybu impulsowego, z bardziej złożoną kontrolą prądu; jednak podstawowa zasada pozostaje taka sama. W każdym razie zalety spawania pulsacyjnego to równomierność samego łuku i powstałej spoiny, a także poprawa ogólnej jakości połączenia: impulsy przyczyniają się do mieszania metalu w jeziorku spawalniczym i eliminacji porów, tlenków i innych defektów. Wada tej funkcji jest tradycyjna - zwiększenie kosztu spawarek.

Tryb 2/4-takt. Możliwość wyboru trybu sterowania urządzeniem - dwutaktowy lub czterotaktowy. Pozwala to dodatkowo dopasować sterowanie do specyfiki sytuacji. Przypomnijmy, że w trybie 2 takt urządzenie działa tak długo, jak przycisk jest wciśnięty, a po zwolnieniu wyłącza się; jest to szczególnie wygodne w przypadku krótkich szwów i innych podobnych zadań, gdy spawanie nie musi być włączone przez długi czas. Z kolei przy czterotaktowym formacie sterowania pierwsze naciśnięcie włącza spawanie, drugie go wyłącza. Ta metoda może być niezastąpiona przy długotrwałej pracy, kiedy przytrzymanie wciśniętego przycisku byłoby uciążliwe.

- Sterowanie synergiczne . Funkcja używana głównie podczas pracy w trybie impulsowym opisanym powyżej. Sterowanie synergiczne można również nazwać „inteligentnym”: odbywa się za pomocą wbudowanych mikrokontrolerów elektronicznych, które sterują większością ustawień i w razie potrzeby automatycznie je zmieniają. W praktyce wygląda to tak: wystarczy spawaczowi ustawić szereg danych wejściowych (rodzaj i grubość materiału, skład gazu osłonowego, grubość drutu itp.) i na tej podstawie urządzenie automatycznie dobierze optymalne parametry robocze (napięcie wyjściowe, konfiguracja impulsów, prędkość podawania drutu itp.). Ponadto, jeśli w trakcie pracy zmieni się jeden z parametrów wejściowych, odpowiednio zmienią się pozostałe wartości.
Sterowanie synergiczne znacznie upraszcza pracę z urządzeniem i jednocześnie poprawia jej jakość, zmniejszając prawdopodobieństwo przepalenia i inne poważne błędy. Jest to szczególnie przydatne dla niedoświadczonych spawaczy, którzy nie są przyzwyczajeni do całkowicie ręcznych ustawień parametrów; jednak nawet profesjonaliści doceniają prostotę i szybkość regulacji tkwiącą w modelach synergicznych. Główną wadą tej funkcji jest to, że znacząco wpływa ona na koszt.

- Cyfrowy wyświetlacz. Obecność własnego wyświetlacza w konstrukcji spawarki. Jest to z reguły najprostszy wyświetlacz segmentowy, przeznaczony do wyświetlania 2 - 3 cyfr i niektórych znaków specjalnych. Jednak nawet takie ekrany są bardziej informacyjne niż światło i inne podobne sygnały: mogą one wyświetlać różnorodne dane (napięcie wejściowe i robocze, czas przed wyłączeniem „na odpoczynek”, kody błędów itp.). A przewagą nad czujnikami zegarowymi są małe rozmiary i uniwersalność - ekran może wyświetlać różne rodzaje informacji. Dzięki temu funkcja ta może znacznie uprościć pracę ze spawarką.

- Złącze zdalnego sterowania . Złącze do podłączenia pilota do urządzenia. W zależności od modelu, może chodzi zarówno o tradycyjne piloty ręczne, jak i o pedałach nożnych. W każdym razie takie akcesorium zapewnia dodatkową wygodę w niektórych sytuacjach – w szczególności umożliwia włączanie i wyłączanie zasilania, a nawet zmianę poszczególnych parametrów pracy bez każdorazowego podchodzenia do urządzenia. Co prawda, ​​najczęściej spawarki są dostarczane bez pilota - daje to jednak pewne korzyści: możesz wybrać takie akcesorium według własnego uznania (najważniejsze jest upewnienie się o kompatybilności).

- Chłodzenie cieczą. Obecność układu chłodzenia cieczą w komplecie ze spawarką. Takie chłodzenie jest bardziej skuteczne niż chłodzenie powietrzem, intensywnie usuwa ciepło z "wnętrza” aparatu, palnika i pozwala osiągnąć bardzo wysoką częstotliwość przełączania (patrz wyżej) - do 100%, przy czym przy prądach 200 A i więcej. Jego wady to: złożoność, wysoki koszt, nieporęczność i znaczna waga. W świetle tych ostatnich, jednostki do chłodzenia cieczą są często wykonywane oddzielnie od samych spawarek i mogą być podłączane/odłączane w zależności od tego, co jest w danej chwili ważniejsze – efektywne chłodzenie lub mobilność. Zwracamy również uwagę, że w przypadku dużej liczby modeli producent zaleca stosowanie specjalistycznych płynów chłodzących, a często nie są one dostarczane w komplecie.

- Wbudowany kompresor . Kompresor dopływu powietrza wbudowany bezpośrednio w urządzenie. Funkcja ta występuje wyłącznie w modelach pracujących w trybie PLASMA. Przypomnijmy, że ten tryb polega na cięciu metalu silnym strumieniem mocno nagrzanego i zjonizowanego powietrza; do wytworzenia wymaganego ciśnienia potrzebny jest kompresor. Może być również zewnętrzny; jednak wbudowany kompresor pozwala nie tylko nosić przy sobie cały niezbędny sprzęt przez cały czas, lecz także zmniejszyć wymiary tego sprzętu. Dodatkowo przy takim sprzęcie nie trzeba martwić się o kompatybilność urządzenia i systemu nawiewu. Wady modeli z wbudowanymi kompresorami obejmują zwiększony koszt, a także wymiary i wagę całej obudowy.

- Rozruch silnika samochodu. Możliwość wykorzystania urządzenia do uruchomienia silnika samochodowego, czyli do zasilania rozrusznika. Innymi słowy, modele z tą funkcją mogą również pracować w trybie urządzenia rozruchowego. Taka możliwość przyda się, jeśli standardowy akumulator samochodowy jest rozładowany, zepsuty lub go brakuje, lecz w pobliżu znajduje się źródło zasilania (sieć lub generator), z którego można zasilić spawarkę. Należy zauważyć, że najczęściej w tym przypadku chodzi o uruchomienie samochodów z 12-woltowymi sieciami pokładowymi - samochodów osobowych, lekkich ciężarówek i autobusów; jednak technicznie nic nie stoi na przeszkodzie, aby zapewnić kompatybilność z ciężkimi pojazdami (ciężarówkami, autobusami) pracującymi pod napięciem 24 W. Te szczegóły należy wyjaśnić osobno.

- Koła transportowe. Obecność w konstrukcji spawarki specjalnych kół, które ułatwiają transport. Waga niektórych nowoczesnych modeli może sięgać kilkudziesięciu kilogramów, a przenoszenie takiego urządzenia może być trudne nawet dla kilku osób. Obecność kół pozwala obejść się siłami jednej osoby, nawet przy znacznej wadze urządzenia.

Uchwyt spawalniczy (MIG/MAG)

Rodzaj uchwytu spawalniczego MIG/MAG, przewidzianego w konstrukcji spawarki.

Należy zaznaczyć, że MIG/MAG to spawanie w specjalnym środowisku gazowym (obojętnym lub aktywnym); patrz „Rodzaj spawania”, aby uzyskać szczegółowe informacje. Uchwyt spawalniczy można opisać jako specjalny wąż, który łączy palnik ze spawarką (a dokładniej palnik jest zwykle częścią uchwytu). Przez taki wąż podawany jest zarówno drut, jak i gaz osłonowy do miejsca spawania.

Uchwyty spawalnicze MIG/MAG najczęściej robione są jako odłączalne, z możliwością podłączenia do standardowego gniazda euro. Zalety tej konstrukcji są oczywiste: przy przechowywaniu, transporcie lub po prostu przy długich przerwach w pracy, wąż można odłączyć i zwinąć, dzięki czemu nie zajmuje on dodatkowej przestrzeni ani nie plącze się pod nogami. Dodatkowo w razie potrzeby – np. w przypadku uszkodzenia lub w nieodpowiedniej długości – fabryczny uchwyt można wymienić na inny.

Odłączana konstrukcja jest mniej popularna, ponieważ jest mniej wygodna. Niemniej jednak wariant ten ma swoje zalety: mocowanie uchwytu do spawarki jest maksymalnie niezawodne, a jednocześnie niedrogie.

Długość przewodu uchwytu elektrodowego

Długość kabla uchwytu elektrody dostarczonego z urządzeniem.

Jak sama nazwa wskazuje, zacisk na elektrodę spawalniczą jest podłączony do urządzenia za pomocą tego kabla. Im dłuższy taki drut, tym większą swobodę ruchu ma spawacz, tym dalej może się oddalić bez przesuwania samej maszyny. Z drugiej strony, niepotrzebnie długie kable stwarzają problemy w przechowywaniu i transporcie, a często podczas pracy (trzeba poszukać miejsca na umieszczenie nadmiaru drutu). Dlatego przy wyborze należy kierować się tym, co jest dla Ciebie ważniejsze: możliwością oddalenia się od urządzenia lub ogólną kompaktowością. Jeśli chodzi o konkretne liczby, najczęściej długość tego drutu waha się od 2 do 3 m, ale w niektórych modelach może osiągnąć 5 m.
Dynamika cen
Kentavr MIG-350 Digit All często porównują
Kentavr SPAV-300 Digit Mini często porównują