Pojemność
Pojemność nominalna to jeden z kluczowych parametrów dysku twardego, określający, ile informacji może się na nim zmieścić. W przypadku dysków SSHD ta pozycja wskazuje pojemność tylko dysku twardego, a w przypadku macierzy RAID — całkowitą pojemność macierzy.
Ilość informacji we współczesnym świecie stale rośnie i wymaga coraz pojemniejszych urządzeń pamięci masowej. Dlatego w większości przypadków warto wybrać większy dysk. W rzeczywistości kwestia wyboru według tego parametru często zależy tylko od ceny: koszt napędu zależy bezpośrednio od pojemności.
Jeśli pytanie brzmi w ten sposób, że trzeba wybrać dysk „mniejszy i tańszy, ale wystarczający”, warto ocenić ilość informacji, z którymi mamy do czynienia, oraz specyfikę jej użytkowania. Na przykład dla zwykłego komputera biurowego przeznaczonego głównie do pracy z dokumentami dysk wewnętrzny o pojemności
2 TB, a nawet
1 TB będzie więcej niż wystarczający, a entuzjastyczny gracz będzie potrzebował
4 TB,
6 TB, a nawet
8 TB nie będzie zbędny. Jeśli używasz dysku do nagrywania z kamer, możesz kupić
dysk HDD o pojemności 10 TB,
12 TB,
14 TB,
16 TB,
18 TB lub więcej.
Format
Współczynnik kształtu, w którym wykonany jest dysk twardy.
Wskaźnik ten określa przede wszystkim wymiary urządzenia. Ale jego bardziej szczegółowe znaczenie zależy od wykonania (patrz odpowiedni punkt). Tak więc w przypadku dysków zewnętrznych od współczynnika kształtu zależą tylko wymiary obudowy i jest to dość przybliżone. Ale wewnętrzne dyski twarde są instalowane w gniazdach o dobrze określonym rozmiarze i lokalizacji otworów na elementy złączne; te otwory są wykonane specjalnie dla tego lub innego współczynnika kształtu. W przypadku komputerów stacjonarnych standardowy współczynnik kształtu to
3,5", w przypadku laptopów -
2,5"; przy tym w ostatnich latach w komputerach stacjonarnych pojawiła się tendencja do miniaturyzacji i przejścia na dyski 2,5-calowe. Teoretycznie jest jeszcze mniejszy współczynnik kształtu - 1,8", ale w praktyce jest używany głównie wśród ultrakompaktowych zewnętrznych dysków twardych.
Interfejs
— SATA Jest to obecnie najpopularniejszy interfejs do podłączania wewnętrznych dysków twardych.
pierwsza wersja SATA zapewnia prędkość przesyłania danych około 1,2 Gbit/s,
SATA 2 ma praktyczną prędkość przesyłania danych około 2,4 Gbit/s (300 MB/s), a najbardziej zaawansowana generacja
SATA 3 ma prędkość 4,8 Gbit/s (600 MB/s)
-eSATA. Modyfikacja interfejsu SATA przeznaczonego do podłączenia zewnętrznych dysków twardych; nie jest kompatybilny z wewnętrznym SATA. Praktyczna prędkość przesyłania danych jest podobna do SATA 2 i wynosi około 2,4 Gbps (300 MB/s).
- SAS. Modyfikacja interfejsu SCSI zapewnia prędkość przesyłu danych do 6 Gbit/s (750 Mb/s). Stosowany jest głównie w serwerach, praktycznie nie jest stosowany w komputerach stacjonarnych i laptopach.
-USB 2.0. Najwcześniejszy ze standardów USB spotykany we współczesnych dyskach twardych - i to wyłącznie zewnętrznych (patrz „Wykonanie”). Zapewnia połączenie z tradycyjnym pełnowymiarowym portem USB, zapewnia prędkość przesyłu danych do 480 Mbit/s, a także dość niskie zasilanie, dlatego dyski z tego typu złączem często wymagają dodatkowego zasilania. W świetle tego wszystkiego, a także pojawienia się bardziej zaawansowanego standardu USB 3.2 (patrz poniżej), dziś USB 2.0 jest uważane za przestarzałe i niezwykle rzadkie, głównie w niedrogich i wczesnych modelach dysk
...ów. Jednak dysk z tym interfejsem można podłączyć także do nowszego portu USB - najważniejsze, żeby złącza pasowały.
— USB 3.2 gen1(poprzednie nazwy USB 3.1 gen1 i USB 3.0). Standard podłączania zewnętrznych dysków twardych, który zastąpił opisany powyżej USB 2.0. Wykorzystuje tradycyjne pełnowymiarowe złącze USB, zapewnia prędkość przesyłu danych do 4,8 Gbps (600 MB/s), a także wyższy poziom zasilania, dzięki czemu łatwiej obejść się bez zewnętrznego zasilania w tego typu dyskach. Jednak z tego samego powodu trzeba zachować ostrożność przy podłączaniu dysków USB 3.2 gen1 do starszych złączy USB 2.0 – takie złącze może nie mieć wystarczającej mocy, aby zasilić nowszy dysk.
-USB 3.2 gen2. Dalszy rozwój standardu USB 3.2 (wcześniej znanego jako USB 3.1 gen2 i USB 3.1). Maksymalna prędkość przesyłania danych w tej wersji została zwiększona do 10 Gbps, a moc zasilacza może sięgać 100 W (przy wsparciu technologii USB Power Delivery). Jednocześnie dyski z tego typu złączem mogą współpracować również z wcześniejszymi wersjami pełnowymiarowych złączy USB - najważniejsze, aby zasilacz był wystarczający.
— USB C 3.2 gen1(poprzednie nazwy USB C 3.1 gen1 i USB C 3.0). Połączenie poprzez złącze USB C, odpowiadające możliwościom USB 3.2 gen1. Możliwości te opisano szerzej powyżej; różnica w stosunku do „zwykłego” USB 3.2 gen1 w tym przypadku polega jedynie na rodzaju złącza: jest to stosunkowo małe (nieco większe od microUSB) gniazdo, które również posiada dwustronne złącze. projekt. Dzięki swoim kompaktowym rozmiarom USB C można znaleźć zarówno w pełnowymiarowych komputerach stacjonarnych i laptopach, jak i w kompaktowych gadżetach, takich jak smartfony i tablety; Niektóre dyski z tym połączeniem początkowo umożliwiają użytkowanie „mobilne”.
— USB C 3.2 gen2(poprzednie nazwy USB C 3.1 gen2 i USB C 3.1). Aktualizacja i ulepszenie opisanego powyżej USB C 3.2 gen1 - to samo złącze USB C i zwiększona prędkość przesyłania danych do 10 Gbps (jak w „zwykłym” USB 3.2 gen2).
- Piorun. Szybki interfejs do podłączania zewnętrznych urządzeń peryferyjnych. Stosowany jest głównie w komputerach i laptopach marki Apple, choć spotykany jest także w sprzęcie innych producentów. Należy pamiętać, że we współczesnych dyskach twardych występują głównie dwie wersje Thunderbolt, które różnią się nie tylko szybkością działania, ale także złączem: Thunderbolt v2(do 20 Gbps) wykorzystuje wtyczkę miniDisplayPort, a Thunderbolt v3(do 40 Gbps) — USB Wtyczka C (patrz wyżej). W związku z tym niektóre dyski twarde obsługują połączenia USB C i Thunderbolt za pośrednictwem pojedynczego złącza sprzętowego, które automatycznie wykrywa, do którego wejścia komputera jest podłączone urządzenie.