Polska
Katalog   /   Komputery   /   Podzespoły   /   Dyski twarde

Porównanie WD Blue WD40EZAZ 4 TB
SMR
vs WD Black 3.5" Gaming Hard Drive WD4005FZBX 4 TB

Dodaj do porównania
WD Blue WD40EZAZ 4 TB SMR
WD Black 3.5" Gaming Hard Drive WD4005FZBX 4 TB
WD Blue WD40EZAZ 4 TB
SMR
WD Black 3.5" Gaming Hard Drive WD4005FZBX 4 TB
Porównaj ceny 1Porównaj ceny 7
TOP sprzedawcy
Typ dyskuwewnętrznywewnętrzny
Rodzaj dyskuHDDHDD
Przeznaczeniedo PCdo PC
Pojemność4000 GB4000 GB
Format3.5 "3.5 "
InterfejsSATA3SATA3
Gwarancja producenta2 lata5 lat
Specyfikacja
Pojemność bufora256 MB256 MB
Sposób zapisuSMRCMR
Prędkość obrotowa5400 obr./min7200 obr./min
Prędkość przesyłu danych180 MB/s202 MB/s
Średni czas dostępu4 ms
Pobór mocy w trybie pracy5.3 W9.1 W
Pobór mocy w trybie czuwania3.4 W5.8 W
Odporność na wstrząsy w trakcie pracy65 G
Poziom hałasu podczas odczytu28 dB36 dB
Poziom hałasu w trybie czuwania25 dB29 dB
Średni czas bezawaryjnej pracy300 tys. razy300 tys. razy
Dane ogólne
Wymiary147x102x26 mm147x102x26 mm
Waga680 g720 g
Data dodania do E-Katalogmaj 2021lipiec 2018

Gwarancja producenta

Gwarancja producenta na ten model.

W rzeczywistości jest to minimalna żywotność obiecana przez producenta, z zastrzeżeniem zasad działania. Najczęściej rzeczywista żywotność urządzenia jest znacznie dłuższa niż gwarantowana.

Sposób zapisu

- CMR (Conventional Magnetic Recording) to klasyczny sposób zapisu magnetycznego charakteryzujący się dużą prędkością dostępu do danych. Dyski twarde CMR są stosowane w systemach, w których ważne jest zapewnienie jak największej (jak to możliwe) prędkości odczytu/zapisu danych. Są to komputery użytkowników, systemy nadzoru wideo itp. Główną wadą dysków twardych CMR jest duża złożoność tworzenia pojemnych dysków, co znajduje odzwierciedlenie w ich cenie. Ponadto dyski HDD z technologią CMR są dość energochłonne.

- SMR (Shingled Magnetic Recording) to obiecujący sposób zapisu magnetycznego. SMR pozwala na wysoką gęstość danych, co z kolei zwiększa pojemność pamięci i obniża wartość rynkową. Dyski twarde SMR charakteryzują się niską prędkością ponownego zapisu danych, dlatego takie dyski pamięci są słabo przystosowane do użycia w systemach komputerowych klientów. Natomiast sprawdziły się dobrze podczas pracy w centrach przetwarzania danych, archiwach i podobnych systemach, dla których niska prędkość zapisu/ponownego zapisu nie jest krytyczna. Jednak niektóre firmy wciąż produkują rozwiązania SMR dla systemów osobistych, a nawet mobilnych. Te dyski twarde wykorzystują zoptymalizowaną technologię zapisu/ponownego zapisu o nazwie Drive-Managed SMR (DM-SMR).

Prędkość obrotowa

W przypadku dysków używanych w komputerach stacjonarnych (patrz „Przeznaczenie”) standardowe prędkości to 5400 obr./min (normalna) i 7200 obr./min (podwyższona). Dostępne są również bardziej specyficzne opcje, w tym modele z możliwością dostosowania prędkości w zależności od obciążenia. Z kolei w dyskach serwerowych mogą się stosować wyższe prędkości – 10 000 obr./min, a nawet 15 000 obr./min.

Prędkość przesyłu danych

Prędkość przesyłu danych między dyskiem a urządzeniami klienckimi zależy od typu napędu, prędkości obrotowej, rozmiaru bufora pamięci i złączy połączeniowych. Ostatni parametr jest najważniejszy, ponieważ nie da się przekroczyć przepustowości konkretnego interfejsu.

Średni czas dostępu

Czas, jaki zajmuje mechanice dysku twardego znalezienie losowych żądanych danych do odczytu. Dla każdego konkretnego przypadku czas wyszukiwania jest inny, ponieważ zależy od lokalizacji danych na powierzchni dysku i położenia głowicy odczytu, dlatego średnia wartość jest wskazywana w specyfikacji dysków twardych. Im krótszy średni czas dostępu, tym szybciej dysk działa, przy pozostałych warunkach równych.

Pobór mocy w trybie pracy

Ilość energii zużywanej przez dysk podczas odczytywania i zapisywania informacji. W rzeczywistości jest to szczytowe pobór mocy, w tych trybach napęd zużywa najwięcej energii.

Dane dotyczące zużycia energii przez dysk twardy są potrzebne przede wszystkim do obliczenia całkowitego zużycia energii przez system i wymagań dotyczących zasilania. Ponadto w przypadku laptopów, które często planuje się używać „z dala od gniazdek”, warto wybrać bardziej energooszczędne dyski.

Pobór mocy w trybie czuwania

Ilość energii zużywanej przez dysk w stanie bezczynności. W stanie włączonym talerze dysków obracają się, niezależnie od tego, czy informacja jest zapisywana czy czytana, czy nie - na utrzymywanie tego obrotu zużywa się energia pobierana w trybie czuwania.

Im mniej energii zużywa się w trybie czuwania, tym oszczędniejszy jest dysk, tym mniej zużywa energii. Jednocześnie zauważamy, że w praktyce parametr ten ma znaczenie głównie przy wyborze dysku do laptopa, gdy decydujące znaczenie ma energooszczędność. W przypadku komputerów stacjonarnych „bezczynny” pobór mocy nie odgrywa szczególnej roli, a przy obliczaniu wymagań dotyczących zasilania należy wziąć pod uwagę nie wskaźnik ten, ale pobór mocy podczas pracy (patrz wyżej).

Odporność na wstrząsy w trakcie pracy

Parametr określający odporność dysku twardego na upadki i wstrząsy w trakcie pracy (czyli w stanie włączonym). Odporność na wstrząsy mierzona jest w G - jednostkach przeciążenia, 1 G odpowiada normalnej grawitacji. Im wyższa liczba G, tym dysk jest bardziej odporny na różnego rodzaju wstrząsy i tym mniej prawdopodobne jest, że ulegnie uszkodzeniu np. w przypadku upadku. Parametr ten jest szczególnie ważny w przypadku dysków zewnętrznych i dysków używanych w laptopach.

Poziom hałasu podczas odczytu

Poziom hałasu wydawanego przez dysk podczas odczytywania i/lub zapisywania informacji. Źródłem dźwięku w tym przypadku są ruchome talerze dysku, a także mechanika sterująca głowicami czytającymi. Im niższy poziom hałasu, tym wygodniejsze korzystanie z urządzenia. Maksymalny hałas wydawany przez współczesne dyski twarde podczas pracy wynosi około 50 dB - jest to porównywalne z tłem dźwiękowym w przeciętnym biurze.
Dynamika cen
WD Blue często porównują
WD Black 3.5" Gaming Hard Drive często porównują