Polska
Katalog   /   Dom i remont   /   Zasilanie awaryjne   /   Zasilacze awaryjne (UPS)

Porównanie Challenger HomeLine 7000T48 7000 VA vs Logicpower LPY-B-PSW-7000VA Plus 7000 VA

Dodaj do porównania
Challenger HomeLine 7000T48 7000 VA
Logicpower LPY-B-PSW-7000VA Plus 7000 VA
Challenger HomeLine 7000T48 7000 VALogicpower LPY-B-PSW-7000VA Plus 7000 VA
Produkt jest niedostępny
od 3 001 zł
Produkt jest niedostępny
TOP sprzedawcy
Rodzajinteraktywnyinteraktywny
Rodzajzwykły (Tower)zwykły (Tower)
Czas przełączania na baterię4 ms
Wejście
Napięcie wejściowe1 faza (230V)1 faza (230V)
Zakres napięcia wejściowego140 – 275 V140-275 V
Prąd maksymalny20 А
Częstotliwość wejściowa45 – 65 Hz
Bypass (podłączenie bezpośrednie)ręcznyręczny
Wyjście
Napięcie wyjściowe1 faza (230V)1 faza (230V)
Maksymalna moc wyjściowa7000 VA7000 VA
Nominalna moc wyjściowa5000 W5000 W
Zniekształcenia napięcia wyjściowego3 %
Kształt przebiegu sinusoidysinusoida (PSW)sinusoida (PSW)
Liczba gniazd z rezerwą2 szt.
Typ gniazdtyp F (Schuko)
Bloki zaciskowe
Bateria
Bez dołączonego akumulatora
Napięcie podłączenia baterii48 V48 V
Regulacja prądu ładowania akumulatora
Zimny start
Podłączanie zewnętrznego akumulatora
Obsługa ładowania LiFePO4
Zabezpieczenia
Zabezpieczenia
zabezpieczenie przed zwarciem
zabezpieczenie przed przeciążeniem
 
filtrowanie szumów
sygnalizacja dźwiękowa
zabezpieczenie przed zwarciem
zabezpieczenie przed przeciążeniem
zabezpieczenie przed przeładowaniem akumulatora zewnętrznego
filtrowanie szumów
 
Bezpiecznikautomatyczny
Dane ogólne
Wyświetlacz
Temperatura robocza0 – 40 °C
Wymiary (WxSxG)290x218x383 mm334x238x403 mm
Waga26 kg27.1 kg
Data dodania do E-Kataloglipiec 2022październik 2018

Czas przełączania na baterię

Czas wymagany do przełączenia obciążenia z zasilania sieciowego na zasilanie bateryjne. W zasilaczach awaryjnych i interaktywnych(patrz "Rodzaj") w tym momencie występuje krótkotrwały zanik napięcia - odpowiednio im krótszy czas transferu na baterię, tym bardziej równomierną moc zapewnia źródło w przypadku awarii zasilania. Idealnie, czas transferu dla konwencjonalnej częstotliwości 50 Hz AC nie powinien przekraczać 5 ms (ćwierć jednego cyklu sinusoidalnego). Zasilacze inwerterowe UPS mają z definicji zerowy czas transferu.

Zakres napięcia wejściowego

W danym przypadku chodzi o zakres napięcia wejściowego, w którym UPS jest w stanie dostarczyć do obciążenia stabilne napięcie tylko dzięki własnym regulatorom, bez przełączania się na baterię. W przypadku zasilaczy awaryjnych UPS (patrz "Rodzaj") ten zakres jest dość mały, od 190 do 260 V; w przypadku zasilaczy interaktywnych, a zwłaszcza inwerterowych - jest znacznie szerszy. Niektóre modele zasilaczy UPS umożliwiają ręczne ustawienie zakresu napięcia wejściowego.

Prąd maksymalny

Maksymalny prąd pobierany przez UPS. W praktyce maksymalne natężenie prądu osiągane jest tylko wtedy, gdy UPS pracuje na zasilaniu sieciowym z maksymalną obciążalnością i całkowicie rozładowaną baterią. Nie mniej jednak, przy obliczaniu obciążenia sieci elektrycznej należy wziąć pod uwagę parametr ten.

Częstotliwość wejściowa

Częstotliwość robocza prądu zmiennego dostarczanego na wejście UPS - a dokładniej zakres częstotliwości tego prądu, w którym urządzenie może dostarczać wymaganą moc do obciążenia dzięki własnym regulatorom, bez użycia baterii. Poza tym zakresem UPS przełącza się w tryb bateryjny. Najmniejszy zakres napięć wejściowych mają zasilacze awaryjne UPS (patrz „Rodzaj”), największy - zasilacze inwerterowe.

Zniekształcenia napięcia wyjściowego

Parametr ten charakteryzuje stopień różnicy między napięciem przemiennym na wyjściu UPS a napięciem idealnym, którego wykres ma postać prawidłowej sinusoidy. Idealne napięcie jest tak nazywane, ponieważ jest najbardziej równomierne i powoduje najmniej niepotrzebnego obciążenia podłączonych urządzeń. Zniekształcenie napięcia wyjściowego jest więc jednym z najważniejszych parametrów określających jakość odbieranego przez obciążenie zasilania. Poziom zniekształceń 0% oznacza, że UPS dostarcza idealną sinusoidę, do 5% - niewielkie zniekształcenia sinusoidy, do 18% - silne zniekształcenia, od 18% do 40% - sygnał trapezopodobny, ponad 40% - sygnał prostokątny.

Liczba gniazd z rezerwą

Liczba gniazd podłączonych do zasilania rezerwowego (baterii), przewidziana w konstrukcji UPS. Aby zasilacz UPS działał zgodnie ze swoim przeznaczeniem (zapewniał zasilanie rezerwowe w przypadku przerw w dostawie prądu), odpowiednie urządzenia elektryczne muszą być podłączone do tych gniazd. Gniazda mają standardowy kształt i są kompatybilne z większością popularnych wtyczek na 230 V.

Minimum przewidziany w UPS to 1 lub 2 gniazda, a w bardziej zaawansowanych 3 lub więcej.

Typ gniazd

Gniazdko pod określony rodzaj wtyczki w konstrukcji zasilacza UPS.

Typ F (Schuko). Tradycyjne europejskie gniazdko z dwoma okrągłymi otworami w środku i stykami uziemiającymi w postaci dwóch metalowych wsporników (góra i dół gniazda). Termin Schuko przylgnął do tego typu gniazdka dzięki skrótowi od niemieckiego Schutzkontakt - styk ochronny.

Typ E (francuski). Gniazdko w stylu francuskim ma dwa okrągłe otwory i wystający kołek uziemiający tuż nad nimi pośrodku. Standard rozpowszechnił się we Francji, Polsce i Belgii (wraz z tradycyjnym gniazdkiem typu F).

Typ G (brytyjski). Wtyczka do takich gniazdek składa się z dwóch płaskich kołków poziomych i jednego płaskiego kołka pionowego do uziemienia. Standard występuje głównie w krajach Wielkiej Brytanii, Malty, Cypru, Singapuru i Hongkongu.

Typ B (amerykański). Gniazda typu amerykańskiego przeznaczone do wtyczek z dwoma płaskimi bolcami i półokrągłym stykiem uziemiającym. Typ B jest szeroko stosowany w krajach o napięciu 110 — 127 V — USA, Japonii, Arabii Saudyjskiej itp.

Regulacja prądu ładowania akumulatora

Regulacja prądu ładowania zapewnia optymalne warunki uzupełniania zapasów energii w ogniwach akumulatorów UPS. W modelach zasilaczy bezprzerwowych o podobnej funkcji instalowany jest kontroler ładowania z możliwością zmiany prądu wyjściowego w zależności od zastosowanego akumulatora. A w niektórych systemach UPS automatyka może nie tylko wstępnie wybrać optymalną siłę prądu, ale także regulować ją podczas procesu ładowania w zależności od stanu akumulatora, zapewniając najdelikatniejszy tryb ładowania. Zwiększa to efektywność procesu ładowania, pomaga wydłużyć żywotność baterii i uniknąć uszkodzeń.

Obsługa ładowania LiFePO4

Możliwość ładowania akumulatorów litowo-żelazowo-fosforanowych w oparciu o technologię LiFePO4 o tej samej nazwie. Przypomnijmy, że odpowiednie akumulatory charakteryzują się dużą liczbą cykli pracy ładowania/rozładowania, stabilnością chemiczną i termiczną, tolerancją na niskie temperatury, krótkim czasem ładowania (w tym dużymi prądami) oraz bezpieczeństwem eksploatacji. Ogólnie rzecz biorąc, takie akumulatory bez problemu radzą sobie z wysokimi obciążeniami szczytowymi i utrzymują napięcie robocze prawie do momentu rozładowania.
Dynamika cen