Tryb nocny
Polska
Katalog   /   Dom i remont   /   Zasilanie awaryjne   /   Zasilacze awaryjne (UPS)

Porównanie SVC SL-2KS-LCD 2000 VA vs PowerWalker VI 2000 CW 2000 VA

Dodaj do porównania
SVC SL-2KS-LCD 2000 VA
PowerWalker VI 2000 CW 2000 VA
SVC SL-2KS-LCD 2000 VAPowerWalker VI 2000 CW 2000 VA
od 712 zł
Produkt jest niedostępny
Porównaj ceny 3
TOP sprzedawcy
Rodzajinteraktywnyinteraktywny
Rodzajzwykły (Tower)zwykły (Tower)
Czas pracy przy pełnym obciążeniu2.5 min
Czas pracy przy połowicznym obciążeniu8 min
Czas przełączania na baterię6 ms
Wejście
Napięcie wejściowe1 faza (230V)1 faza (230V)
Zakres napięcia wejściowego145 – 275 V162 – 290 V
Bypass (podłączenie bezpośrednie)brakręczny/automatyczny
Wyjście
Napięcie wyjściowe1 faza (230V)1 faza (230V)
Najwyższa moc wyjściowa2000 VA2000 VA
Nominalna moc wyjściowa1400 W1400 W
Dokładność napięcia wyjściowego5 %
Sprawność96 %
Kształt przebiegu sinusoidyczysta sinusoida (PSW)czysta sinusoida (PSW)
Częstotliwość wyjściowa50/60 Hz50/60 Hz
Liczba gniazd z rezerwą3 szt.3 szt.
Typ gniazdtyp F (Schuko)typ F (Schuko)
Liczba złączy C13/C14 bez rezerwy1 szt.
Bateria
Całkowita pojemność baterii7 Ah7 Ah
Liczba akumulatorów4 szt.4 szt.
Czas pełnego naładowania360 min240 min
Zimny start
Zabezpieczenia
Zabezpieczenia
zabezpieczenie przed zwarciem
zabezpieczenie przed przeciążeniem
filtrowanie szumów
zabezpieczenie linii transmisji danych
 
sygnalizacja dźwiękowa
zabezpieczenie przed zwarciem
zabezpieczenie przed przeciążeniem
filtrowanie szumów
zabezpieczenie linii transmisji danych
złącze wyłączania awaryjnego
sygnalizacja dźwiękowa
Bezpiecznikautomatyczny
Interfejs
 
USB
 
RS-232
USB
SmartSlot
Dane ogólne
Wyświetlacz
Temperatura robocza0 – 40 °C0 – 40 °C
Poziom hałasu45 dB
Wymiary (WxSxG)215x145x398 mm220x145x455 mm
Waga21.9 kg18.1 kg
Data dodania do E-Katalogkwiecień 2021grudzień 2020

Czas pracy przy pełnym obciążeniu

Czas ciągłej pracy UPS z całkowicie naładowanej baterii, gdy podłączone jest do niego obciążenie o mocy równej mocy wyjściowej UPS (maksymalna lub efektywna w zależności od rodzaju obciążenia, więcej szczegółów w odpowiednich punktach). W przypadku zasilaczy UPS zaprojektowanych do pracy z komputerem domowym lub biurowym, czas około 10-15 minut jest uważany za wystarczający, wystarczy do zapisania danych i wyłączenia. Do zasilania serwerów warto wykorzystywać urządzenia o czasie pracy 20 minut lub więcej.

Czas pracy przy połowicznym obciążeniu

Czas ciągłej pracy UPS z całkowicie naładowanej baterii, gdy podłączone jest do niego obciążenie o mocy równej mocy wyjściowej UPS (maksymalna lub efektywna w zależności od rodzaju obciążenia, więcej szczegółów w odpowiednich paragrafach). Czas pracy przy takim obciążeniu jest znacznie dłuższy niż przy pełnym, a nawet w najprostszych modelach może sięgać 20-30 minut.

Czas przełączania na baterię

Czas wymagany do przełączenia obciążenia z zasilania sieciowego na zasilanie bateryjne. W zasilaczach awaryjnych i interaktywnych(patrz "Rodzaj") w tym momencie występuje krótkotrwały zanik napięcia - odpowiednio im krótszy czas transferu na baterię, tym bardziej równomierną moc zapewnia źródło w przypadku awarii zasilania. Idealnie, czas transferu dla konwencjonalnej częstotliwości 50 Hz AC nie powinien przekraczać 5 ms (ćwierć jednego cyklu sinusoidalnego). Zasilacze inwerterowe UPS mają z definicji zerowy czas transferu.

Zakres napięcia wejściowego

W danym przypadku chodzi o zakres napięcia wejściowego, w którym UPS jest w stanie dostarczyć do obciążenia stabilne napięcie tylko dzięki własnym regulatorom, bez przełączania się na baterię. W przypadku zasilaczy awaryjnych UPS (patrz "Rodzaj") ten zakres jest dość mały, od 190 do 260 V; w przypadku zasilaczy interaktywnych, a zwłaszcza inwerterowych - jest znacznie szerszy. Niektóre modele zasilaczy UPS umożliwiają ręczne ustawienie zakresu napięcia wejściowego.

Bypass (podłączenie bezpośrednie)

Bypass(by-pass) oznacza tryb pracy UPS, przy którym zasilanie jest dostarczane do obciążenia bezpośrednio ze źródła zewnętrznego - sieci elektrycznej, generatora diesel itp. - z niewielkim przetwarzaniem lub bez przetwarzania w samym UPS. Ten tryb można aktywować zarówno automatycznie, jak i ręcznie.

— Automatyczny bypass jest rodzajem środka bezpieczeństwa. Włącza się, gdy UPS w trybie normalnym nie może zasilać obciążenia - na przykład, gdy UPS jest przeciążone z powodu gwałtownego wzrostu poboru mocy obciążenia.

— Ręczny bypass umożliwia włączenie tego trybu na żądanie użytkownika, niezależnie od parametrów pracy. Może to być konieczne, na przykład, w celu wymiany baterii "na gorąco" (więcej szczegółów poniżej) lub w celu uruchomienia sprzętu, którego moc rozruchowa przekracza moc UPS. Z technicznego punktu widzenia może on również pełnić rolę środka bezpieczeństwa, lecz systemy automatyczne są pod tym względem bardziej niezawodne.

Niektóre zasilacze UPS są zdolne do przełączania się między dwoma wariantami bypassu.

Dokładność napięcia wyjściowego

Parametr ten charakteryzuje stopień różnicy między napięciem przemiennym na wyjściu UPS a napięciem idealnym, którego wykres ma postać prawidłowej sinusoidy. Idealne napięcie jest tak nazywane, ponieważ jest najbardziej równomierne i powoduje najmniej niepotrzebnego obciążenia podłączonych urządzeń. Zniekształcenie napięcia wyjściowego jest więc jednym z najważniejszych parametrów określających jakość odbieranego przez obciążenie zasilania. Poziom zniekształceń 0% oznacza, że UPS dostarcza idealną sinusoidę, do 5% - niewielkie zniekształcenia sinusoidy, do 18% - silne zniekształcenia, od 18% do 40% - sygnał trapezopodobny, ponad 40% - sygnał prostokątny.

Sprawność

Sprawność (efektywność) w przypadku UPS to stosunek jego mocy wyjściowej do mocy pobieranej z sieci. Jest to jeden z głównych parametrów określających ogólną sprawność urządzenia: im wyższa sprawność, tym mniej energii traci UPS (z powodu nagrzewania się elementów, promieniowania elektromagnetycznego itp.). We współczesnych modelach wartość sprawności może sięgać 99%.

Liczba złączy C13/C14 bez rezerwy

Liczba gniazd C13/C14 bez podłączenia do zasilania rezerwowego, przewidzianych w konstrukcji UPS.

W przeciwieństwie do gniazd z rezerwą, takie gniazda nie chronią przed zanikiem napięcia w sieci - dla podłączonych do nich urządzeń UPS działa jedynie jako zabezpieczenie przeciwprzepięciowe, niwelując przepięcia. Pozwala to na podłączenie do UPS urządzeń, które nie wymagają ciągłego zasilania i nie boją się przestojów – na przykład głośników czy drukarek. W przypadku awarii zasilania, takie urządzenia nie będą zużywać baterii, a UPS będzie w stanie dłużej zasilać urządzenia, dla których wręcz przeciwnie, nieprzerwane zasilanie jest niezbędne.

Złącze C13/C14 potocznie nazywane jest „gniazdem komputerowym”; wytwarza takie samo napięcie 230 V jak zwykła sieć domowa, jednak nie jest kompatybilne z wtyczkami do tradycyjnych gniazd, gdyż wykorzystuje trzy płaskie piny. Jednakże istnieją adaptery pomiędzy tymi standardami.

Czas pełnego naładowania

Czas potrzebny do pełnego naładowania baterii UPS. Należy pamiętać, że w danym przypadku czas ten jest liczony według specjalnych zasad: nie od 0 do 100%, lecz od stanu, w którym nie można podtrzymywać połowicznego obciążenia, do 90% ładunku. Oczywiście pełne naładowanie zajmie trochę więcej czasu. Jednak te dane są bliższe praktyce niż liczenie „od 0 do 100%”: brak możliwości pracy z połowicznym obciążeniem sprawia, że UPS jest prawie bezużyteczne, a stan ten można przyjąć jako zero, a 90% akumulatora jest już w stanie zapewnić gwarancję w przypadku awarii zasilania.
Dynamika cen
SVC SL-2KS-LCD często porównują