Test Passmark CPU Mark
Wynik pokazany przez procesor komputera w teście (benchmarku) Passmark CPU.
Passmark CPU Mark to kompleksowy test porównawczy, który pozwala ocenić wydajność procesora w różnych trybach i przy różnej liczbie przetwarzanych wątków. Wyniki są wyświetlane w punktach; im wyższy wynik, tym wyższa ogólna wydajność procesora. Dla porównania: w 2020 roku w rozwiązaniach niedrogich wyniki mierzone są w setkach punktów, w modelach ze średniej półki wahają się od 800 – 900 do ponad 6 000 punktów, a niektóre topowe układy są w stanie pokazać 40 000 punktów lub więcej.
Test Passmark G3D Mark
Wynik pokazany przez kartę graficzną komputera w teście Passmark G3D Mark.
Passmark G3D Mark to kompleksowy test porównawczy do sprawdzania wydajności karty graficznej w różnych trybach. Tradycyjnie dla takich testów wyniki wyświetlane są w punktach, większa liczba punktów oznacza (proporcjonalnie) większą moc obliczeniową. Należy jednak pamiętać, że karta graficzna jest testowana w różnych trybach, a ostateczny wynik jest wyświetlany na podstawie kilku wyników w specjalistycznych testach. Dlatego adaptery o podobnym ogólnym wyniku mogą nieznacznie różnić się rzeczywistą wydajnością w niektórych określonych formatach pracy. Jeśli więc komputer stacjonarny kupowany jest do profesjonalnej pracy graficznej, a wysoka wydajność w niektórych specjalistycznych zadaniach jest krytyczna - te szczegóły warto wyjaśnić osobno.
Zwróć uwagę, że obecnie przy pomocy Passmark G3D Mark są testowane wszystkie typy kart graficznych (zobacz „Typ karty graficznej”). Jednocześnie dla rozwiązań zintegrowanych wynik powyżej 1 200 punktów jest uważany za bardzo dobry, a w modelach dedykowanych wskaźnik ten może wahać się od 2 200 - 2 300 punktów do 20 000 lub więcej.
Pojemność dysku
Pojemność głównego dysku dostarczonego w zestawie z komputerem. W przypadku modeli z kombinowanymi pamięciami masowymi (na przykład HDD+SSD, patrz „Rodzaj pamięci masowej”) za główny w tym przypadku uważany jest większy dysk twardy; a jeśli w zestawie znajdują się dwa dyski HDD, to zwykle są one o takiej samej pojemności.
Z czysto praktycznego punktu widzenia im więcej danych może pomieścić dysk, tym lepiej. Tak więc wybór według tego wskaźnika zależy głównie od ceny: duża pojemność nieuchronnie oznacza wyższy koszt. Ponadto pamiętaj, że moduły SSD w przeliczeniu na gigabajt są znacznie droższe niż dyski twarde; tak więc pod względem pojemności i kosztów mogą być porównywane tylko dyski tego samego typu.
Jeśli chodzi o konkretną pojemność, to wskaźniki
250 GB lub mniej we współczesnych komputerach stacjonarnych można znaleźć głównie wśród dysków SSD. Dyski twarde tej wielkości prawie nigdy nie są używane, dla nich pojemności
od 250 do 500 GB są nadal uważane za raczej skromne.
501 – 750 GB to całkiem dobra wartość jak na dysk SSD i jest najczęściej używana wśród nich.
751 GB – 1 TB to imponująca liczba jak na dysk SSD i średni poziom dla dysków twardych,
1,5 – 2 TB to bardzo solidna pojemność nawet jak na HDD. A bardzo dużą pojemność –
ponad 2 TB – paradoksa
...lnie można znaleźć nawet wśród czystych dysków SSD: takie dyski są instalowane w wysokiej klasy stacjach roboczych, gdzie prędkość jest nie mniej ważna niż pojemność.Pojemność drugiego dysku
Pojemność dodatkowego dysku zainstalowanego w komputerze.
Parametr ten dotyczy przede wszystkim konfiguracji z różnymi typami nośników. Tak więc w pakietach HDD+SSD i HDD+eMMC dysk twardy jest uważany za dysk główny, a ten punkt wskazuje na pojemność modułu półprzewodnikowego. W konfiguracjach SSD+eMMC za drugi dysk jest uważany eMMC - jest mniej pojemny i pełni funkcję pomocniczą. Istnieją modele PC z dwoma dyskami twardymi, ale w takich przypadkach dyski mają zwykle taką samą pojemność i nie ma dla nich znaczenia, który z nich jest uważany za główny.
Jeśli mówimy o konkretnych liczbach, to pojemność
do 128 GB można uznać za stosunkowo niewielką, a
128 GB lub więcej - solidną. Aby uzyskać więcej informacji na temat pojemności, zobacz „Pojemność dysku” powyżej.
Liczba wewnętrznych zatok 3.5"
Liczba wewnętrznych slotów na podzespoły 3,5" w komputerze. Ten współczynnik kształtu jest standardem dla dysków twardych i jest często używany w innych typach napędów; w związku z tym im więcej slotów, tym więcej napędów można zamontować w komputerze.
Zwracanie uwagi na liczbę wewnętrznych slotów 3,5" ma sens przede wszystkim, jeśli kupujesz konfigurację bez napędów lub planujesz w przyszłości modernizację swojego komputera. Warto zauważyć, że zaleca się montaż napędów nie w jednym rzędzie, lecz przez jeden slot - dla wydajności chłodzenia, aby liczba slotów była dwukrotnie większa od liczby montowanych urządzeń.
Liczba wewnętrznych zatok 2.5"
Liczba wewnętrznych slotów na podzespoły formatu 2,5" w komputerze. Ten współczynnik kształtu jest popularny w szczególności wśród dysków SSD, a także kompaktowych („laptopowych”) dysków twardych.
Warto przede wszystkim zwrócić uwagę na liczbę wewnętrznych slotów 2,5", jeśli kupujesz konfigurację bez napędów lub planujesz w przyszłości uaktualnić swój komputer. Należy zauważyć, że zaleca się montaż dysków nie w jednym rzędzie, lecz przez jeden slot - dla wydajności chłodzenia, najlepiej więc, aby liczba slotów była dwukrotnie większa od liczby montowanych urządzeń.
Złącza
W większości komputerów stacjonarnych asortyment ten obejmuje zarówno złącza na płycie głównej, jak i dedykowanej karcie graficznej, wśród których są
VGA,
DVI,
wyjście HDMI (istnieją modele, w których
HDMI 2 szt.),
wejście HDMI,
DisplayPort,
miniDisplayPort. Więcej szczegółów na ich temat.
- VGA. Inaczej nazywa się D-Sub. Analogowe wyjście wideo o maksymalnej rozdzielczości do 1280x1024 bez obsługi dźwięku. Rzadko jest instalowane w nowoczesnych urządzeniach, jednak może być przydatne do podłączenia niektórych modeli projektorów i telewizorów, a także przestarzałego sprzętu wideo.
- DVI. Nowoczesne komputery stacjonarne mogą być wyposażone zarówno w czysto cyfrowe złącze DVI-D, jak i hybrydowe DVI-I; to ostatnie umożliwia również połączenie analogowe, w tym współpracę z urządzeniami VGA przez adapter, a w formacie analogowym ma rozdzielczość 1280x1024. W cyfrowym DVI parametr ten może osiągnąć 1920x1200 w trybie pojedynczego kanału (single link) i 2560x1600 w trybie podwójnego kanału (dual link). Dostępność trybu dwukanałowego należy wyjaśnić osobno.
- Wyjście HDMI. Wyjście cyfrowe pierwotnie przeznaczone dla treści HD — wideo o wysokiej rozdzielczości i wielokanałowego dźwięku. Interfejs HDMI jest niemal obowiązko
...wy w nowoczesnym sprzęcie multimedialnym z obsługą HD, jest też niezwykle popularny w monitorach komputerowych - więc dostępność takiego wyjścia w komputerze stacjonarnym daje bardzo szerokie możliwości podłączenia zewnętrznych ekranów, a nawet wysokiej klasy urządzeń audio. Niektóre urządzenia mogą mieć nawet 2 wyjścia HDMI.
- Wejście HDMI. Dostępność co najmniej jednego wejścia HDMI w komputerze. Aby uzyskać szczegółowe informacje na temat samego interfejsu, patrz powyżej; tutaj zauważamy, że to wejścia tego formatu znajdują się głównie w komputerach All-In-One (patrz „Rodzaj”). Pozwala to przynajmniej na użycie własnego ekranu komputera All-In-One jako ekranu dla innego urządzenia (na przykład jako zewnętrznego monitora laptopa). Możliwe są również inne, bardziej szczegółowe opcje korzystania z wejścia HDMI - na przykład nagrywanie przychodzącego sygnału wideo lub przesyłanie go (przełączanie) do jednego z wyjść wideo komputera.
Zarówno wejścia, jak i wyjścia HDMI we współczesnych komputerach mogą odpowiadać różnym wersjom:
- v 1.4. Najwcześniejszy standard w powszechnym użyciu. Obsługuje rozdzielczości do 4096x2160 i częstotliwość odświeżania do 120 kl./s (choć tylko w rozdzielczości 1920x1080 lub niższej), może być również używany do przesyłania sygnałów wideo 3D. Oprócz oryginalnej wersji 1.4, można znaleźć ulepszone v 1.4a i v 1.4b - w obu przypadkach usprawnienia wpłynęły głównie na pracę z 3D.
- v 2.0. Standard, znany również jako HDMI UHD, jako pierwszy zapewnił pełną obsługę UltraHD 4K, częstotliwość odświeżania do 60 kl./s, a także kompatybilność z proporcjami klatki 21:9. Ponadto liczba jednocześnie transmitowanych kanałów i strumieni audio wzrosła odpowiednio do 32 i 4. Warto również zauważyć, że początkowo wersja 2.0 nie zapewniała obsługi HDR, jednak pojawiła się ona w aktualizacji v 2.0a; jeśli funkcja ta jest dla Ciebie ważna, warto wyjaśnić, która wersja 2.0 jest dostępna na komputerze, oryginalna lub zaktualizowana.
- v 2.0b. Druga aktualizacja opisanej powyższej v 2.0. Główną aktualizacją było rozszerzenie możliwości HDR, w szczególności obsługa dwóch nowych formatów.
- v 2.1. Nazywana również HDMI Ultra High Speed: przepustowość została zwiększona do tego stopnia, że możliwe stało się przesyłanie wideo 10K z prędkością 120 kl./s (nie wspominając o skromniejszych rozdzielczościach) oraz praca z rozbudowanymi schematami kolorów do 16 bitów. To ostatnie może być przydatne do niektórych zadań zawodowych. Należy jednak pamiętać, że wszystkie funkcje HDMI v 2.1 są dostępne tylko przy użyciu kabli zaprojektowanych dla tego standardu.
- DisplayPort. Cyfrowy interfejs multimedialny, pod wieloma względami podobny do HDMI, jednak wykorzystywany głównie w sprzęcie komputerowym – w szczególności jest szeroko stosowany w komputerach i monitorach Apple. Jedną z ciekawych cech tego standardu jest możliwość pracy w formacie daisy chain – szeregowe podłączenie kilku ekranów do jednego portu, z transmisją własnego sygnału do każdego z nich (chociaż funkcja ta nie jest technicznie dostępna we wszystkich ekranach dla tego interfejsu). DisplayPort jest również dostępny na rynku w kilku wersjach, które są obecnie aktualne:
- v 1.2. Najwcześniejsza powszechnie używana wersja (2010 r.). Jednak już w tej wersji pojawiła się kompatybilność 3D i tryb daisy chain. Maksymalna w pełni obsługiwana rozdzielczość przy podłączeniu jednego monitora to 5K (30 kl./s), z pewnymi ograniczeniami możliwa jest transmisja do 8K; częstotliwość odświeżania 60 Hz jest obsługiwana do rozdzielczości 3840x2160, a 120 Hz - do 2560x1600. Korzystając z połączenia szeregowego, można jednocześnie podłączyć do 2 ekranów 2560x1600 przy 60 klatkach na sekundę lub do 4 ekranów 1920x1200. Oprócz oryginalnej wersji 1.2, istnieje ulepszona v 1.2a, której główną innowacją jest obsługa AMD FreeSync - technologii synchronizacji częstotliwości odświeżania monitora z sygnałem z karty graficznej AMD.
- v 1.3. Aktualizacja wprowadzona w 2014 roku. Zwiększona przepustowość pozwoliła zapewnić już pełną, bez ograniczeń obsługę 8K przy 30 kl./s, a także przesyłać obrazy 4K przy 120 kl./s, wystarczających do pracy z 3D. Rozdzielczości w trybie daisy chain również wzrosły - do 4K (3840x2160) przy 60 kl./s dla dwóch ekranów i 2560x1600 przy tej samej częstotliwości odświeżania dla czterech. Z konkretnych innowacji warto wspomnieć o trybie Dual Mode, który umożliwia podłączenie urządzeń HDMI i DVI do takiego złącza poprzez najprostsze pasywne adaptery.
- v 1.4. Najnowsza wersja szeroko stosowana w nowoczesnych komputerach stacjonarnych. Formalnie maksymalna prędkość połączenia nie wzrosła w porównaniu do poprzedniej wersji, jednak dzięki optymalizacji sygnału stała się możliwa praca z rozdzielczościami 4K i 5K przy 240 kl./s oraz z 8K - przy 120 kl./s. Co prawda, do tego podłączony ekran musi obsługiwać technologię kodowania DSC - w przeciwnym razie dostępne rozdzielczości nie będą się różnić od wskaźników wersji 1.3. Ponadto w wersji 1.4 dodano obsługę szeregu funkcji specjalnych, w tym HDR10, a maksymalna liczba jednocześnie przesyłanych kanałów audio wzrosła do 32.
- miniDisplayPort. Zmniejszona wersja pisanego powyżej złącza DisplayPort może również odpowiadać różnym wersjom (patrz wyżej). Zwróć uwagę, że to samo złącze sprzętowe jest używane w Thunderbolt w wersjach 1 i 2, a część graficzna tego interfejsu jest oparta na DisplayPort. Dlatego nawet niektóre monitory Thunderbolt można podłączyć bezpośrednio do miniDisplayPort (chociaż wskazane jest doprecyzowanie tej opcji osobno).
- COM (RS-232). Port szeregowy, pierwotnie używany do podłączania modemów telefonicznych i niektórych urządzeń peryferyjnych, w szczególności myszy. Jednak dziś ten interfejs jest używany jako interfejs serwisowy w różnych urządzeniach - telewizorach, projektorach, sprzęcie sieciowym (routerach i przełącznikach) itp. Połączenie z komputerem stacjonarnym przez RS-232 umożliwia sterowanie parametrami urządzenia zewnętrznego z poziomu komputera.PS/2
Liczba złączy PS/2 znajdujących się z tyłu komputera.
PS/2 to wyspecjalizowane złącze o charakterystycznym okrągłym kształcie, używane wyłącznie do klawiatur i myszy. Ze względu na pojawienie się bardziej zaawansowanych interfejsów (USB 3.2, Thunderbolt itp.) jest uważane za przestarzałe, ale nadal występuje w niektórych modelach komputerów stacjonarnych. Wynika to w szczególności z faktu, że zastosowanie peryferiów PS/2 pozwala na zwolnienie bardziej zaawansowanych portów, które mogą być potrzebne dla bardziej wymagających urządzeń.
Jeśli chodzi o liczbę, to używa się maksymalnie dwóch złączy PS/2 - jedno do klawiatury, drugie do myszy. Istnieją konfiguracje z jednym takim gniazdem - w takich przypadkach zwykle jest ono kombinowane i umożliwia podłączenie obu typów urządzeń peryferyjnych do wyboru. Jednak te szczegóły warto wyjaśnić osobno.
Liczba obsługiwanych monitorów
Maksymalna liczba monitorów, które można jednocześnie podłączyć do komputera i udostępnić.
Jednoczesne podłączenie kilku ekranów pozwala na poszerzenie przestrzeni wizualnej dostępnej dla użytkownika. Na przykład może być przydatne dla projektantów i metrampaży podczas pracy z materiałami wielkoformatowymi, dla programistów - do rozdzielania zadań (jeden monitor do pisania kodu, drugi do wyszukiwania potrzebnych informacji i innych celów pomocniczych) oraz dla graczy-entuzjastów - do zapewnienia maksymalnego efektu zanurzenia.