Procesor
—
Sony X1. Procesor Sony X1 jest używany w kilku seriach telewizorów Sony: XH i XG. Takie telewizory zajmują kilka nisz jednocześnie: kategorię budżetową i klasę średnią. Najbardziej niedrogie modele pokazują obraz w rozdzielczości 4K bez obsługi szerokiego zakresu dynamiki, w bardziej zaawansowanych modelach używany jest 4K HDR. Zasadniczo są to proste modele przeznaczone tylko do oglądania filmów. Do rozrywki w grach dynamicznych telewizory z takim procesorem są mniej odpowiednie.
—
Sony X1 Extreme. Sony X1 Extreme jest o 40 % mocniejszy niż jego poprzednik Sony X1 i jest przeznaczony do obsługi obrazów 4K HDR. Praca z dynamicznym zakresem HDR umożliwia wyświetlanie realistycznego obrazu o wyższej jakości. Telewizory z procesorem Sony X1 Extreme to modele ze średniej i wyższej półki cenowej. Jakość obrazu w nich jest poprawiona dzięki obecności dynamicznego podświetlenie matrycy. Ważną cechą Sony X1 Extreme jest wykorzystanie dwóch niezależnych baz danych reprodukcji kolorów (Dual database processing). Technologia Object-based HDR remaster analizuje obraz wyświetlany na ekranie, porównuje kolory z bazą danych i dostosowuje je do oglądania na konkretnym telewizorze. Technologia Super Bit Mapping 4K HDR sprawia, że przejścia kolorów są płynniejsze i bardziej naturalne, zapewniając bardziej realistyczne obrazy.
—
Sony X1 Ultimate. Procesor Sony X1 Ult
...imate może obsługiwać zarówno obrazy 4K (3840 × 2160), jak i 8K HDR (7680 x 4320), w zależności od rozmiaru ekranu. Telewizory z takim procesorem zapewniają obraz z najgłębszymi szczegółami i najwyższą jakością rysowania tekstur. Telewizory z procesorem Sony X1 Ultimate to w większości zaawansowane modele średniej i wyższej klasy. Takie telewizory dają efekt całkowitego zanurzenia się w atmosferze oglądanego filmu. Sony X1 Ultimate obsługuje technologię X-Reality PRO z ekskluzywną bazą danych kolorów. Nawet podczas wyświetlania obrazu w niskiej rozdzielczości na ekranie telewizora jakość obrazu jest automatycznie podnoszona do 8K (4K) z szerokim zakresem dynamicznym HDR. Obecna jest technologia X-tended Dynamic Range PRO, która rozprowadza podświetlenie matrycy zgodnie z wyświetlanymi scenami. Dynamiczne podświetlenie poprawia kontrast i sprawia, że obraz jest tak "żywy", jak to tylko możliwe, a jednocześnie czerń jest bardziej nasycona niż kiedykolwiek.
— Sony Cognitive XR. Telewizory z procesorem Sony XR mogą wyświetlać obraz w rozdzielczości 4K i 8K, w zależności od samego modelu telewizora. Są to zaawansowane technologicznie modele działające pod kontrolą ulepszonej sztucznej inteligencji. Sony XR to jeden z pierwszych na świecie procesorów „kognitywnych”. Algorytm oprogramowania przetwarza informacje o dźwięku i wideo w jednym strumieniu. Według świadczeń producenta, podobieństwo przetwarzania danych przez procesor i pracy ludzkiego mózgu pozwala telewizorowi na odtworzenie danych w najbardziej zrozumiałej, niemal natywnej dla człowieka formie.
— LG. W hierarchii procesorów do telewizorów firmy LG istnieją trzy duże rodziny: α5, α7 i α9.
Procesory pierwszego rzędu (Alpha 5) są stosowane telewizorach tanich marek. Obejmują one podstawowy zakres zadań w rodzaju poprawy odwzorowania kolorów, skalowania wideo do 4K oraz tworzenia wirtualnego dźwięku przestrzennego.
Procesory z linii Alpha 7 znajdziemy na pokładzie telewizorów LG ze średniej półki z matrycami NanoCell i OLED. Ich zaawansowana funkcjonalność obejmuje automatyczne dostosowywanie parametrów obrazu i dźwięku do gatunku nadawanej transmisji, a także automatyczne dostosowywanie jasności i tonacji do otaczającej przestrzeni.
Flagowe telewizory LG są wyposażone w procesory α9, które wykorzystują algorytmy głębokiego uczenia maszynowego do analizowania gatunku emitowanych treści wideo i dostosowywania do nich parametrów obrazu i dźwięku. Procesory Alpha 9 współpracują ze wszystkimi odpowiednimi specyfikacjami technologii High Dynamic Range telewizorów LG i są wyposażone w profesjonalny system identyfikacji dźwięku.
Należy pamiętać, że z każdą kolejną edycją procesory obrazu LG zwiększają funkcjonalność. Ich generacje są oznaczane przedrostkiem Gen z numerem seryjnym generacji.
— LG α 7 Gen 4. Inteligentny procesor czwartej generacji stosowany w telewizorach LG NanoCell i OLED ze średniej półki. Przetwarza transmisje wideo w wysokiej rozdzielczości 4K, skaluje obrazy do tego samego formatu z niższych rozdzielczości klatek i znacznie zwiększa moc przetwarzania. Procesor LG α 7 Gen 4 opiera się na specjalnych algorytmach, które analizują rodzaj treści wideo w czasie rzeczywistym, aby dostosować ustawienia obrazu i dźwięku do gatunku transmisji. Tonacja i jasność obrazu na ekranie są również automatycznie dostosowywane do oświetlenia otaczającej przestrzeni. Po drodze procesor poprawia jakość dźwięku telewizora - w zależności od oglądanych treści i lokalizacji widzów w pomieszczeniu (określane za pomocą pilota Magic).
— LG α 9 Gen 4. Potężny procesor neuronowy do topowych paneli LG OLED, Mini LED i NanoCell z 2021 roku i nowszych modeli. Wykorzystuje algorytmy głębokiego uczenia maszynowego, aby analizować gatunek nadawanych treści wideo i dostosowywać do niego parametry obrazu i dźwięku. Procesor jest wystarczająco wytrzymały, aby skalować wideo z rozdzielczości 2K i 4K do ultraformatowego 8K ze znacznie wyższym poziomem szczegółowości i klarowności obrazu. Kolejną jego cechą jest funkcja AI Picture Pro, która rozpoznaje obiekty w kadrze (twarze, ciała, obiekty) i przetwarza każdy z nich z osobna, dzięki czemu obrazy jako całość wyglądają bardziej naturalnie. Treści HDR są zoptymalizowane dzięki regulacji jasności — procesor współpracuje ze wszystkimi obowiązującymi specyfikacjami technologii High Dynamic Range w telewizorach LG. Wisienką na torcie jest profesjonalny system identyfikacji dźwięku, który automatycznie dostosowuje poziom głośności w różnych rodzajach treści i miksuje dźwięk dwukanałowy z dźwiękiem przestrzennym (format 5.1.2).
— Samsung Crystal 4K. Procesor Crystal 4K firmy Samsung jest używany głównie w telewizorach Samsung Crystal UHD. Ta kategoria telewizorów wyróżnia się przystępną ceną. Są to proste modele, które wyświetlają obraz w rozdzielczości Ultra 4K. Procesor Samsung Crystal 4K jest wystarczająco potężny, aby podnieść jakość kolorów do HDR. Spośród zastosowanych technologii można wyróżnić Contrast Enhancer i Dynamic Crystal Color, dzięki którym można precyzyjnie uregulować kontrast i jasność obrazu.
— Samsung Quantum 4K. Procesor Quantum 4K firmy Samsung jest używany w telewizorach Samsung z podświetleniem QLED. Wysoka wydajność pozwala na skalowanie obrazu Full HD do 4K oraz z szerokim zakresem dynamicznym HDR. Procesor Quantum 4K firmy Samsung jest wyposażony w unikalną technologię Quantum HDR, która sprawia, że obrazy są bardziej szczegółowe, bogate i wyraziste. Procesor obsługuje technologię dynamicznego podświetlenie Dual LED, dzięki której obraz nabiera ekstremalnego kontrastu i jednocześnie wysokiej jasności. Telewizory mają również specjalny tryb gry Real Game Enhancer + z obsługą technologii AMD FreeSync.
— Samsung Quantum 8K. Procesor Quantum 8K firmy Samsung jest używany w telewizorach Samsung QLED od 2020 roku. Modele z tej serii potrafią odtwarzać obrazy 8K HDR, a obraz tak wysokiej jakości można uzyskać nawet ze źródła o rozdzielczości od 4K do Full HD. Z reguły są to modele z najwyższej półki. Telewizory tej klasy można wykorzystać jako element profesjonalnego kina domowego. Głęboka szczegółowość obrazu zapewnia pełne zanurzenie w treści wideo. Za przetwarzanie obrazu odpowiada sztuczna inteligencja QLED TV.
— Philips P5 Perfect Picture. Procesor Philips P5 Perfect Picture jest używany w telewizorach Philips OLED. Moc procesora jest wystarczająca do odtwarzania obrazów 4K. W starszych modelach dostępny jest rozszerzony zakres dynamiczny kolorów HDR. Telewizory z procesorem Philips P5 Perfect Picture obejmują kilka kategorii kosztowych jednocześnie, segment niedrogi i średni przedział cenowy. Na ekranach takich modeli wyświetlany jest wysokiej jakości obraz, ale z reguły nie osiąga referencyjnego Ultra 4K HDR, ponieważ wymaga to bardziej profesjonalnej matrycy. Procesor P5 Perfect Picture to pierwszy procesor firmy Philips wykorzystujący sztuczną inteligencję. Philips P5 Perfect Picture obsługuje takie technologie, jak Dolby Vision, HDR10 +, Perfect Natural Motion i Micro Dimming Pro.
— Philips P5 Pro Perfect Picture. Procesor Philips P5 Pro Perfect Picture jest używany w telewizorach Philips z zaawansowanym OLED. Modele z tym procesorem mogą wyświetlać obrazy w rozdzielczości Ultra 4K HDR. Zwykle występuje w telewizorach zaawansowanych. Telewizory z procesorem Philips P5 Pro Perfect Picture korzystają z interfejsu sieci neuronowej opartej na inteligencji maszynowej. Obecne są asystenci głosowi Asystent Google i Amazon Alexa. Procesor wykorzystuje następujące technologie do przetwarzania obrazu i dźwięku: Dolby Vision, Dolby Atmos, HDR10 +, Micro Dimming Perfect i Wide Color Gamut.Matryca
Rodzaj matrycy zastosowanej w telewizorze. Wśród nich na największą uwagę zasługują
OLED,
QLED i
NanoCell, które można znaleźć w telewizorach z odpowiedniego przedziału cenowego. Teraz bardziej szczegółowo o każdym z nich i o innych, bardziej klasycznych opcjach:
— OLED. Telewizory z ekranami wykorzystującymi organiczne diody elektroluminescencyjne. Takie diody LED mogą służyć zarówno do podświetlania tradycyjnej matrycy LCD, jak i jako elementy, z których zbudowany jest ekran. W pierwszym przypadku przewagą OLED nad tradycyjnym podświetleniem LED jest kompaktowość, wyjątkowo niski pobór mocy, równomierność podświetlenia, a także doskonała jasność i kontrast. A w matrycach w całości składających się z OLED zalety te są jeszcze wyraźniejsze. Głównymi wadami telewizorów OLED są wysoka cena (która jednak stale spada wraz z rozwojem i udoskonalaniem technologii), a także podatność pikseli organicznych na wypalanie się przy długotrwałej transmisji statycznych obrazów lub obrazów ze statycznymi elementami (logo kanału telewizyjnego, panel informacyjny itp.).
— QLED. Telewizory z ekranami wykorzystującymi technologię kropek kwantowych - QLED. Takie ekrany różnią się od zwykłych matryc LED konstrukcją podświetlenia: wielowarstwowe filtry barwne w takim podświetleniu zastępowane są powłoką cienkowarstwową, przepuszczającą światło na bazie nanocząstek, a tradycy
...jne białe diody LED - niebieskimi. Pozwala to osiągnąć znaczny wzrost jasności i nasycenia kolorów przy jednoczesnej poprawie jakości odwzorowania kolorów, dodatkowo zmniejsza grubość i zmniejsza pobór mocy ekranu. Wadą matryc QLED jest tradycyjna - wysoka cena.
— QD-OLED. Modyfikacja technologii "kropek kwantowych" (QLED) zaprezentowana przez firmę Samsung pod koniec 2021 roku jako odpowiedź na zaawansowane matryce OLED firmy LG. Z zasady działania ta technologia jest całkowicie podobna do oryginalnej QLED: niebieskie diody LED, samoświecące piksele (zamiast oświetlenia zewnętrznego) oraz „kropki kwantowe”, które pełnią rolę filtrów barwnych, lecz jednocześnie praktycznie nie osłabiają światła (w przeciwieństwie do tradycyjnych filtrów). Jednocześnie dzięki zastosowaniu szeregu zaawansowanych rozwiązań twórcom udało się osiągnąć całkiem imponującą specyfikację, znacząco przewyższającą wiele innych matryc OLED. Specyfikacja ta obejmuje szczytową jasność 1000 nitów (cd/m²), doskonały kontrast i głębię czerni, a także pokrycie kolorów w 90% zgodnie ze standardem BT.2020 i w 120% zgodnie z DCI-P3.
— TN+Film. Najstarszy z typów matryc stosowanych w nowoczesnych telewizorach, jest też najprostszy i najtańszy. Oprócz niskiego kosztu zaletą TN-Film jest dobry czas reakcji. Jednocześnie jakość obrazu i oddawanie barw są stosunkowo skromne, kąty widzenia niewielkie, a rezerwa jasności niska. Dlatego opcja ta jest używana głównie w modelach niedrogich z małymi ekranami.
— IPS. Typ matrycy pierwotnie opracowany w oparciu o wysoką jakość odwzorowania kolorów. Rzeczywiście, ekrany IPS dają jasne, nasycone kolory, mają dobrą przestrzeń kolorów, wysoką jasność i szerokie kąty widzenia. Początkową wadą tej technologii był krótki czas reakcji, ale w nowoczesnych modyfikacjach IPS moment ten został praktycznie wyeliminowany. To samo dotyczy kosztów: same ekrany IPS są droższe niż TN-film, ale w nowoczesnych telewizorach różnica ta jest stosunkowo niewielka, prawie niezauważalna na tle całkowitego kosztu telewizorów. Dzięki temu matryce tego typu cieszą się sporą popularnością.
— *VA. W tym przypadku chodzi o jedną z odmian matryc, takich jak VA - MVA, PVA, Super PVA itp. Poszczególne odmiany mogą się nieco różnić właściwościami użytkowymi, ale wszystkie mają wspólne cechy. W rzeczywistości matryce *VA są opcją przejściową między klasy wysoką IPS a niedrogą TN-Film: są stosunkowo niedrogie, zapewniają dość dobre odwzorowanie kolorów i kąty widzenia do 178°. Główną wadą takich ekranów jest długi czas reakcji, ale jest on stopniowo eliminowany wraz z rozwojem i ulepszaniem technologii. Matryce *VA stosowane są w szczególności w telewizorach pozycjonowanych jako funkcjonalne i jednocześnie niedrogie modele.
— PLS. W rzeczywistości - jedna z opisanych powyżej odmian matryc IPS, opracowana przez firmę Samsung. Według producenta w takich matrycach udało się osiągnąć wyższą jasność i kontrast niż w tradycyjnych IPS, a także nieco obniżyć koszty.
— NanoCell. Matryca oparta na kropkach kwantowych. Ten rodzaj matryc jest stosowany w telewizorach LG i został po raz pierwszy zaprezentowany w 2017 roku. Matryce NanoCell wykorzystują strukturę klasycznych wyświetlaczy LCD. Ale w przeciwieństwie do tych ostatnich, używają tak zwanych kropek kwantowych zamiast klasycznego ogólnego podświetlenia tła, które zapewniają światło monochromatyczne. Technologia NanoCell pozwala zmniejszyć zużycie energii, jednocześnie zwiększając zasięg kolorów i kąt widzenia. Warto zauważyć, że matryce NanoCell nie są jedynymi, które wykorzystują technologię kropek kwantowych. Podobne rozwiązania oferują: Samsung (matryca QLED), Sony (Matryca Triluminos), Hisense (ULED).Rodzaj podświetlenia
—
Edge LED — boczne podświetlenie matrycy. W tym przypadku diody LED są rozmieszczone na obwodzie ekranu. Aby równomiernie rozprowadzić oświetlenie, tło matrycy posiada specjalny odbłyśnik. Istotną zaletą telewizorów Edge LED jest minimalna grubość urządzenia. Spośród wad można wyróżnić obecność rozjaśnień wzdłuż krawędzi, które pojawiają się w określonych warunkach. Światła można zobaczyć w scenach, w których dominują ciemne odcienie.
—
Direct LED — podświetlenie matrycy. W takim przypadku diody LED są równomiernie rozmieszczone na całym obszarze ekranu. Bezpośrednie podświetlenie LED sprawia, że obraz jest jednocześnie kontrastowy i jasny. Telewizory z tą technologią mają dobrą reprodukcję kolorów. Wadą mogą stać zwiększony pobór mocy i zwiększone wymiary obudowy. Dodatkowo takie telewizory mają duże opóźnienie wejściowe, przez co ekrany z podświetleniem Direct LED słabo nadają się do gier dynamicznych.
—
FALD (Full-Array Local Dimming) to technologia podświetlenie szeroko stosowana w telewizorach LG. Bliskim odpowiednikiem FALD jest bezpośrednie podświetlenie LED. Diody LED są również równomiernie rozmieszczone na całej powierzchni matrycy, ale technologia FALD zapewnia jasny, nasycony kolorami obraz o wysokim kontraście. Inną charakterystyczną cechą FALD jest zdolność do reprodukcji czerni naturalnej. Kiedy na ekranie wyświetla się czerń, diody
...LED są wyłączane w grupach, w sektorach, co pozwala na silne nasycenie czerni. Oczywiście obfitość diod LED na matrycy sprawia, że telewizor jest masywniejszy, a jednocześnie cięższy. "Apetyt" na prąd w takich modelach jest powyżej średniej.
— Mini LED. System podświetlenia ekranu na podłożu ze zredukowanych diod LED (stąd prefiks Mini). Na tej samej płaszczyźnie panelu telewizora liczba diod LED wzrosła kilkukrotnie, jeśli narysujemy paralele z tradycyjnymi systemami LED. Dzięki temu płótno z podświetleniem Mini LED posiada wielokrotnie więcej lokalnych stref przyciemniania obrazu (Local Dimming), co jest niezbędne do poprawnego działania technologii obrazu z rozszerzonym zakresem dynamiki. Do odtwarzania treści HDR systemy Mini LED są znacznie lepsze niż zwykłe wyświetlacze LCD.
— Dual LED. Markowy system podświetlenia stosowany w telewizorach Samsung. Technologia polega na podświetlaniu obrazu na ekranie dwoma rodzajami diod LED: jedna emituje światło w zimnym spektrum, druga w ciepłym. Podwójne podświetlenie Dual LED poprawia odwzorowanie kolorów i zwiększa kontrast szczegółów, dostosowując tonację kolorów obrazu do treści na ekranie.Tuner cyfrowy
Rodzaje tunerów cyfrowych (odbiorników) przewidzianych w konstrukcji telewizora.
Takie tunery są niezbędne do odbioru telewizji cyfrowej przez TV; jednocześnie do normalnej pracy standard transmisji musi odpowiadać typowi tunera (z osobnymi wyjątkami, patrz poniżej). Należy pamiętać, że odbiorniki są również dostępne jako oddzielne urządzenia; jednak łatwiej (i często taniej) jest od razu kupić telewizor z tunerem wbudowanym o wymaganym formacie. W telewizji nowoczesnej można znaleźć tunery naziemne
DVB-T2, kablowe
DVB-C oraz satelitarne
DVB-S i
DVB-S2, głównymi cechami których są:
- DVB-T2 (naziemne). Główny nowoczesny standard nadawania cyfrowego. Takie nadawanie ma wiele zalet w porównaniu z tradycyjnym analogiem: pozwala na przesyłanie wyższej rozdzielczości i wielokanałowego dźwięku, z lepszą jakością dźwięku i obrazu, a jakość ta jest w pełni zachowana, dopóki sygnał nie zostanie osłabiony do poziomu krytycznego. Jednak w niektórych krajach naziemne nadawanie cyfrowe jest dopiero uruchamiane, więc dostępność zasięgu DVB-T2 w twoim regionie należy wyjaśnić osobno.
- DVB-C (kablowe). Podstawowy nowoczesny standard cyfrowej transmisji naziemnej. Pomimo pojawienia się bardziej zaawansowanego DVB-C2 jest nadal szeroko stosowany i najprawdopodobniej sytuacja ta długo się nie zmieni.
- DVB-S (satelitar
...ne). Pierwsza generacja standardu cyfrowego DVB dla nadawania satelitarnego. Obecnie jest to stosunkowo rzadkie ze względu na pojawienie się bardziej zaawansowanego DVB-S2, który jest również wstecznie kompatybilny z oryginalnym DVB-S.
- DVB-S2 (satelitarne). Najbardziej zaawansowany i popularny obecnie standard cyfrowej transmisji satelitarnej. Będąc spadkobiercą DVB-S, zachował z nim kompatybilność; dlatego producenci często ograniczają się do zainstalowania w swoich telewizorach tylko tunera DVB-S2 - pozwala on na odbiór obu głównych formatów transmisji satelitarnej.Funkcje i możliwości
Wersja HDMI
O samym interfejsie więcej informacji można znaleść powyżej, a jego wersje różnią się ze względu na maksymalną rozdzielczość i inne cechy. Oto opcje, występujące w nowoczesnych telewizorach:
— v 1.4. Najstarsza z aktualnych do dziś wersji, wydana w 2009 roku. Tym nie mniej, obsługuje wideo 3D jest w stanie pracować z rozdzielczością do 4096x2160 prędkością 24 kl./s, a w rozdzielczości Full HD częstotliwość odświeżania może osiągnąć 120 kl./s. Oprócz oryginalnej v.1.4, są także wersje ulepszone — v.1.4a i v.1.4b; są one podobne pod względem możliwości podstawowych, w obu przypadkach ulepszenia dotyczą głównie pracy z treścią 3D.
— v 2.0. Znaczące uaktualnienie HDMI, przedstawione w 2013 roku. W tej wersji maksymalna liczba klatek na sekundę w rozdzielczości 4K wzrosła do 60 kl./s, a przepustowość audio - do 32 kanałów i 4 oddzielnych strumieni jednocześnie. Również z innowacji można wyróżnić wsparcie ultrapanoramicznego formatu 21:9. W aktualizacji v.2.0a do funkcji interfejsu dodano obsługę dla HDR, w v.2.0b funkcja ta została poprawiona i rozszerzona.
— v 2.1. Mimo podobieństwa nazwy z v.2.0, wersja ta, wydana w 2017 roku, stała się bardzo dużą aktualizacją. W szczególności, dodano obsługę 8K i nawet 10K przy prędkości do 120 kl./s, a także jeszcze bardziej rozszerzono możliwości HDR. W tej wersji został wydany własny kabel — HDMI Ultra High Speed, wszystkie funkcje
HDMI 2.1 dostępne są tylko w przypadku korz
...ystania z kabli tego standardu, chociaż podstawowe funkcje mogą być używane z prostszymi przewodami.Technologie HDMI
—
VRR. Technologia adaptacyjnej synchronizacji częstotliwości VRR (Variable Refresh Rate) pozwala na dostosowanie częstotliwości odświeżania obrazu na ekranie telewizora w czasie rzeczywistym zgodnie z liczbą klatek na wyjściu konsoli lub podłączonego komputera. Funkcja zapewnia płynne renderowanie dynamicznych scen, eliminuje rwanie obrazu oraz gwarantuje wygodną i stabilną rozgrywkę. Technologia ta realizowana jest za pośrednictwem HDMI v 2.1.
—
ALLM. Automatyczny tryb niskiego opóźnienia do gier (Auto Low Latency Mode). Telewizor przełącza się w tryb gier, gdy wykryje podłączenie konsoli. Zmniejszenie opóźnienia wyjściowego na ekranie telewizora osiąga się poprzez zawieszenie niektórych funkcji przetwarzania obrazu. Tryb ALLM może być również przydatny do karaoke i rozmów wideo.
— eARC. Interfejs HDMI v 2.1 ma ulepszony zwrotny
kanał audio eARC (enhanced Audio Return Channel). Technologia ta umożliwia przesyłanie dźwięku wyższej jakości z telewizora do soundbara lub amplitunera AV. Producent deklaruje, że obsługuje ona najnowsze formaty audio o przepływności do 192 kHz, nieskompresowane 5.1 i 7.1, a także 32-kanałowy nieskompresowany dźwięk. eARC obsługuje także Dolby TrueHD, DTS-HD Master Audio, DTS:X, Dolby Atmos.
— CEC. System CEC (Consumer Electronics Control) przeznaczony jest do zdalnego sterowania podłączonymi do telewizora urządzeniami przy użyciu jednego pilota.
...Urządzenia podłącza się do TV za pomocą kabla HDMI.Wejścia dodatkowe
Łączność telewizora opiera się nie tylko na technologiach bezprzewodowych (opisanych powyżej), ale także na połączeniu przewodowym. W szczególności transmisja wideo może odbywać się przez złącza
VGA,
AV. Część z nich zapewnia również transmisję dźwięku, oprócz tego może być
mini-Jack (3,5 mm). Oraz inne do komunikacji z urządzeniami zewnętrznymi. Więcej o nich:
-
USB. Złącze do podłączenia zewnętrznych urządzeń peryferyjnych. Obecność USB oznacza przynajmniej, że telewizor może odtwarzać treści z dysków flash i innych zewnętrznych urządzeń pamięci masowej USB. Ponadto można przewidzieć inne sposoby wykorzystania tego wejścia:
nagrywanie programów telewizyjnych na nośniku zewnętrznym, podłączenie kamery internetowej (patrz ibid.), Klawiatura i mysz do korzystania z wbudowanej przeglądarki i innego oprogramowania itp. zestaw opcji zależy od funkcjonalności telewizora, należy go każdorazowo określić osobno.
-
Czytnik kart. Urządzenie do pracy z kartami pamięci, najczęściej w formacie SD. Głównym zastosowaniem czytnika kart jest odtwarzanie treści z takich kart na telewizorze; funkcja ta jest szczególnie wygodna przy przeglądaniu materiałów z aparatów fotograficznych i wideo - w takich urządzeniach karty pamięci są szeroko stosowane. Można przewidzieć inne sposob
...y wykorzystania tej funkcji, na przykład nagrywanie transmisji, a nawet wymianę plików między kartą a pamięcią telewizora. Należy pamiętać, że karty SD mają kilka podgatunków - oryginalne SD, SD HC i SD XC i nie wszystkie z nich mogą być obsługiwane przez czytnik kart.
- LAN. Standardowe złącze do połączenia przewodowego z sieciami komputerowymi (zarówno LAN jak i Internet). Występuje głównie w modelach obsługujących Smart TV (w tym urządzenia Android TV; zobacz odpowiednie punkty). Połączenie przewodowe jest mniej wygodne niż Wi-Fi, nie jest tak estetyczne, więc producenci skupiają się bardziej na połączeniu bezprzewodowym, w wyniku czego wskaźniki prędkości złącza LAN nie są wskazane, a w niektórych przypadkach mogą być niedopuszczalne transmisje 4K.
- VGA. Analogowe wejście wideo, znane również jako D-sub 15 pin. Początkowo interfejs VGA został opracowany dla komputerów, ale ze względu na pojawienie się bardziej zaawansowanych standardów, takich jak HDMI (patrz poniżej) i ograniczenia techniczne (maksymalna rozdzielczość to tylko 1280x1024, brak możliwości przesyłania dźwięku) jest uważany za przestarzały i jest używany coraz mniej. Dlatego sensowne jest poszukiwanie telewizora z takim złączem głównie w przypadkach, gdy planowane jest użycie go jako monitora przestarzałego komputera lub laptopa.
- AV. Kombinowany analogowy interfejs audio/wideo, jest to złącze zazwyczaj określane jako wejście A/V. W rzeczywistości w interfejsie kompozytowym są zwykle trzy złącza - osobno dla wideo i lewego/prawego kanału dźwięku stereo (w telewizorach z jednym głośnikiem, który nie obsługuje stereo, brakuje jednego ze złączy audio). Jakość obrazu podczas pracy z tym wejściem jest niska, a formaty HD nie są w ogóle obsługiwane; z drugiej strony interfejs kompozytowy jest niezwykle rozpowszechniony nie tylko w nowoczesnym, ale i wcześniejszym sprzęcie, takim jak magnetowidy VHS.
- Port COM (RS-232). Złącze początkowo zaprojektowane dla technologii komputerowej. W telewizorach służy jako kontroler: podłączając urządzenie do komputera, można sterować parametrami telewizora i różnymi ustawieniami, czasami dość specyficznymi i niedostępnymi przy użyciu zwykłego pilota.