Темна версія
Польща
Каталог   /   Комп'ютерна техніка   /   Комплектуючі   /   Системи охолодження

Порівняння MSI CORE FROZR L vs Thermalright Macho 120 SBM

Додати до порівняння
MSI CORE FROZR L
Thermalright Macho 120 SBM
MSI CORE FROZR LThermalright Macho 120 SBM
від 257 zł
Товар застарів
від 250 zł
Товар застарів
ТОП продавці
Головне
Призначеннядля процесорадля процесора
Типактивний кулерактивний кулер
Видування повітряного потокувбік (розсіювання)вбік (розсіювання)
Максимальний TDP250 Вт200 Вт
Вентилятор
Кількість вентиляторів1 шт1 шт
Діаметр вентилятора120 мм120 мм
Тип підшипникагідродинамічнийгідродинамічний
Максимальні оберти1800 об/хв1300 об/хв
Регулятор обертівавто (PWM)авто (PWM)
Макс. повітряний потік71.27 CFM55.81 CFM
Напрацювання на відмову150 тис. год50 тис. год
Можливість заміни
Рівень шуму34 дБ33 дБ
Джерело живлення4-pin4-pin
Радіатор
Теплових трубок4 шт5 шт
Контакт теплотрубокнепрямий
Матеріал радіатораалюміній/мідьалюміній/мідь
Матеріал підкладкинікельована мідь
Socket
AMD AM2/AM3/FM1/FM2
AMD AM4
Intel 775
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
 
Intel 1151 / 1151 v2
Intel 1200
AMD AM2/AM3/FM1/FM2
 
Intel 775
Intel 1150
Intel 1155/1156
Intel 1366
Intel 2011 / 2011 v3
Intel 2066
Intel 1151 / 1151 v2
Intel 1200
Інше
Тип кріпленнядвосторонній (backplate)двосторонній (backplate)
Габарити140x155x89 мм130x111x150 мм
Висота155 мм150 мм
Вага960 г690 г
Дата додавання на E-Katalogсерпень 2018квітень 2017

Максимальний TDP

Максимальний TDP, який забезпечується системою охолодження. Відзначимо, що даний параметр вказується тільки для рішень, оснащених радіаторами (див. «Тип»); для окремо виконаних вентиляторів ефективність визначається іншими параметрами, насамперед значеннями повітряного потоку (див. вище).

TDP можна описати як кількість тепла, яке система охолодження здатна відвести від обслуговуваного компонента. Відповідно, для нормальної роботи всієї системи потрібно, щоб TDP системи охолодження був не нижче тепловиділення цього компонента (дані по тепловиділенню зазвичай зазначаються докладні характеристики комплектуючих). А краще всього підбирати охолоджувачі з запасом по потужності хоча б у 20 – 25 % — це дасть додаткову гарантію на випадок форсованих режимів роботи і нештатних ситуацій (у тому числі засмічення корпусу і зниження ефективності повітрообміну).

Що стосується конкретних чисел, то найбільш скромні сучасні системи охолодження забезпечують TDP до 100 Вт, найбільш прогресивні — до 250 Вт і навіть вище.

Максимальні оберти

Найбільші оберти, на яких здатен працювати вентилятор системи охолодження; для моделей без регулятора обертів (див. нижче) у цьому пункті зазначається штатна швидкість обертання. У найбільш «повільних» сучасних вентиляторах максимальна швидкість не перевищує 1000 об/хв, в самих «швидких» може становити до 2500 об/хв і навіть більше .

Відзначимо, що даний параметр щільно пов'язаний з діаметром вентилятора (див. вище): чим менше діаметр, тим вище повинні бути оберти для досягнення потрібних значень повітряного потоку. При цьому швидкість обертання безпосередньо впливає на рівень шуму і вібрацій. Тому вважається, що потрібний об'єм повітря найкраще забезпечувати великими і порівняно «повільними» вентиляторами; а «швидкі» невеликі моделі має сенс застосовувати там, де компактність має вирішальне значення. Якщо ж порівнювати по швидкості моделі однакового розміру, то більш високі оберти позитивно позначаються на продуктивності, проте підвищують не тільки рівень шуму, а також ціну та енергоспоживання.

Макс. повітряний потік

Максимальний повітряний потік, що може створити вентилятор системи охолодження; вимірюється в CFM - кубічних футах за хвилину.

Чим вище кількість CFM - тим ефективніший вентилятор. З іншого боку, висока продуктивність вимагає або великого діаметра (що позначається на габаритах та вартості), або високої швидкості (а вона підвищує рівень шуму та вібрацій). Тому при виборі має сенс не гнатися за максимальним повітряним потоком, а скористатися спеціальними формулами, що дозволяють розрахувати необхідне кількість CFM залежно від типу та потужності компонента, що охолоджується, та інших параметрів. Такі формули можна знайти у спеціальних джерелах. Що ж до конкретних чисел, то найбільш скромних системах продуктивність вбирається у 30 CFM, а найбільш потужних може становити понад 80 CFM.

Також варто враховувати, що фактичне значення повітряного потоку на найбільших оборотах зазвичай нижче за заявлений максимальний; докладніше див. «Статичний тиск».

Напрацювання на відмову

Загальний час, який вентилятор системи охолодження здатний гарантовано пропрацювати до виходу з ладу. Зазначимо, що при вичерпанні цього часу пристрій не обов'язково зламається — зазвичай сучасні вентилятори мають значний запас міцності і здатні пропрацювати ще якийсь період. Водночас оцінювати загальну довговічність системи охолодження варто саме за цим параметром.

Рівень шуму

Стандартний рівень шуму, створюваного системою охолодження під час роботи. Зазвичай в цьому пункті вказується максимальний шум при штатному режимі роботи, без перевантажень і іншого «екстриму».

Відзначимо, що рівень шуму позначається в децибелах, а це нелінійна величина. Так що оцінювати фактичну гучність простіше всього по порівняльних таблиць. Ось така таблиця для значень, що зустрічаються в сучасних системах охолодження:

20 дБ — ледь чутний звук (тихий шепіт людини на відстані близько 1 м, звуковий фон на відкритому полі за містом в безвітряну погоду);
25 дБ — дуже тихо (звичайний шепіт на відстані 1 м);
30 дБ — тихо (настінний годинник). Саме такий шум за санітарними нормами є максимально допустимим для постійних джерел звуку в нічний час (з 23.00 до 7.00). Це означає, що якщо комп'ютером планується сидіти вночі — бажано, щоб гучність системи охолодження не перевищувала даного значення.
35 дБ — розмова упівголоса, звуковий фон в тихій бібліотеці;
40 дБ — розмова, порівняно неголосна, але вже в повний голос. Максимально допустимий за санітарними нормами рівень шуму для житлових приміщень в денний час, з 7.00 до 23.00. Втім, навіть найбільш галасливі системи охолодження зазвичай не дотягують до цього показника, максимум для подібної техніки становить близько 38 – 39 дБ.

Теплових трубок

Кількість теплових трубок в системі охолодження

Теплова трубка являє собою герметичну конструкцію, в якій знаходиться легкокипляча рідина. При нагріванні одного кінця трубки ця рідина випаровується і конденсується в іншому кінці, відбираючи таким чином тепло у джерела нагрівання і передаючи його охолоджувачу. У наш час такі пристосування широко застосовуються переважно в процесорних системах охолодження (див. «Призначення») – вони з'єднують між собою підкладку, яка безпосередньо контактує з CPU, і радіатор активного кулера. Виробники підбирають кількість трубок, орієнтуючись на загальну продуктивність кулера( див. «Максимальний TDP»); однак моделі зі схожими показниками TDP все ж можуть помітно відрізнятися за даним параметром. У таких ситуаціях варто враховувати наступне: збільшення числа теплових трубок підвищує ефективність передачі тепла, проте збільшує також габарити, вагу і вартість всієї конструкції.

Що стосується кількості, то в найпростіших моделях передбачається 1 – 2 теплові трубки, а в найбільш прогресивних і потужних процесорних системах ця кількість може становити 7 і більше.

Контакт теплотрубок

Тип контакту між тепловими трубками, передбаченими в радіаторі системи охолодження, і охолоджуваними компонентами (зазвичай CPU). Детальніше про теплотрубках див. вище, а види контакту можуть бути наступними:

Непрямий. Класичний варіант конструкції: теплові трубки проходять через металеву (зазвичай алюмінієвий) підошву, яка безпосередньо прилягає до поверхні чипу. Перевагою такого контакту є максимально рівномірний розподіл тепла між трубками, причому незалежно від фізичного розміру самого чипу (головне, щоб він не був більше підошви). Водночас додаткова деталь між процесором і трубками неминуче збільшує тепловий опір і трохи знижує загальну ефективність охолодження. У багатьох системах, особливо висококласних, цей недолік компенсується різними конструктивними рішеннями (насамперед максимально щільним з'єднанням трубок з підошвою), однак це, зі свого боку, впливає на вартість.

Прямий. При прямому контакті теплові трубки безпосередньо прилягають до охолоджуваного чипу, без додаткової підошви; для цього поверхню трубок з потрібної сторони сточується до площини. Завдяки відсутності проміжних деталей тепловий опір в місцях прилягання трубок виходить мінімальним, і водночас сама конструкція радіатора виявляється більш простій і недорогий, ніж при непрямому контакті. З іншого боку, між тепловими трубками є зазори, іноді досить значні — в результаті поверхня обслуговуваного чипу охолодж...ується нерівномірно. Це частково компенсується наявністю підкладки (в даному випадку вона заповнює ці проміжки) і застосуванням термопасти, однак по рівномірності відводу тепла прямий контакт все одно неминуче поступається непрямому. Тому даний варіант зустрічається переважно в недорогих кулерах, хоча може застосовуватися і в досить продуктивні рішення.

Матеріал підкладки

Матеріал, з якого виконана підкладка системи охолодження — поверхня, що безпосередньо контактує з охолоджуваним компонентом (найчастіше з процесором). Цей параметр особливо важливий для моделей з використанням теплових трубок (див. вище) , хоча він може вказуватися і для кулерів без цієї функції. Варіанти можуть бути такими: алюміній, нікельований алюміній, мідь, нікельована мідь. Детальніше про них.

— Алюміній. Традиційний, найбільш поширений матеріал підкладки. При відносно невисокій вартості алюміній має непогані характеристики теплопровідності, легко піддається шліфовці (необхідної для щільного прилягання) і добре протистоїть появі подряпин і інших нерівностей, а також корозії. Правда, за ефективністю тепловідведення цей матеріал все ж поступається міді — однак це стає помітно переважно в прогресивних системах, що вимагають максимально високої теплопровідності.

— Мідь. Мідь коштує помітно дорожче алюмінію, проте це компенсується більш високою теплопровідністю і, відповідно, ефективністю охолодження. До помітних недоліків цього металу можна віднести деяку схильність до корозії під дією вологи і певних речовин. Тому в чистому вигляді мідь використовується порівняно рідко — частіше зустрічаються нікельовані підкладки (див. нижче).

— Нікельована мідь. Підкладка з міді, що має додаткове покриття...з нікелю. Таке покриття збільшує стійкість до корозії і подряпин, при цьому воно практично не впливає на теплопровідність підкладки і ефективність роботи. Правда, дана особливість дещо збільшує ціну радіатора, однак вона зустрічається переважно у висококласних системах охолодження, де цей момент практично непомітний на тлі загальної вартості пристрою.

— Нікельований алюміній. Підкладка з алюмінію з додатковим покриттям з нікелю. Про алюміній загалом див. вище, а покриття підвищує стійкість радіатора до корозії, появи подряпин і нерівностей. З іншого боку, воно позначається на вартості, притому що на практиці для ефективної роботи нерідко буває цілком достатньо і чистого алюмінію (тим більше що цей метал сам по собі досить стійкий до корозії). Тому даний варіант розповсюдження не отримав.

Socket

Тип сокету — роз'єму для процесора — з яким (якими) сумісна відповідна система охолодження.

Різні сокети розрізняються не тільки за сумісністю з тим чи іншим CPU, але і за конфігурацією посадкового місця для системи охолодження. Так що, купуючи процесорну систему охолодження окремо, варто переконатися в її сумісності з роз'ємом. У наш час випускаються рішення переважно під такі типи сокетів: AMD AM2/AM3/FM1/FM2, AMD AM4, AMD TR4/TRX4, Intel 775, Intel 1150, Intel 1155/1156, Intel 1366, Intel 2011/ 2011 v3, Intel 2066, Intel 1151 / 1151 v2, Intel 1200, Intel 1700.
MSI CORE FROZR L часто порівнюють
Thermalright Macho 120 SBM часто порівнюють