Темна версія
Польща
Каталог   /   Дім і ремонт   /   Автономне живлення та енергозабезпечення   /   Стабілізатори напруги

Порівняння Luxeon WDR-10000VA 10 кВА / 7000 Вт vs Luxeon LDS-10000VA SERVO 10 кВА / 6000 Вт

Додати до порівняння
Luxeon WDR-10000VA 10 кВА / 7000 Вт
Luxeon LDS-10000VA SERVO 10 кВА / 6000 Вт
Luxeon WDR-10000VA 10 кВА / 7000 ВтLuxeon LDS-10000VA SERVO 10 кВА / 6000 Вт
від 634 zł
Товар застарів
від 824 zł
Товар застарів
ТОП продавці
Тип стабілізаторарелейнийелектромеханічний
Вхідна напруга230 B (1 фаза)230 B (1 фаза)
Потужність7000 Вт6000 Вт
Потужність10 кВА10 кВА
Характеристики
Діапазон вхідної напруги135-270 В140-260 В
Точність вихідної напруги (±)7 %3 %
ККД97 %
Вольтметрцифровийцифровий
Розетки
Клемне з'єднання
Рівні захисту
Захист
від перегріву
 
від короткого замикання
від перевантаження
від підвищеної / зниженої напруги
від перегріву
від високочастотних перешкод
від короткого замикання
від перевантаження
від підвищеної / зниженої напруги
Інше
Розміщення
настінний
 
 
підлоговий
Охолодженняпасивнеактивне
Ступінь захисту IP2020
Ручка для транспортування
Габарити450x320x170 мм320x250x395 мм
Вага26 кг29 кг
Дата додавання на E-Katalogберезень 2014березень 2014

Тип стабілізатора

Релейний. У таких пристроях є трансформатор з набором контактів, кожен з яких відповідає за певний значення напруги. Таким чином, регулювання здійснюється ступінчасто. А за перемикання між групами контактів відповідає, у повній відповідності з назвою, спеціалізоване реле. Будучи простими і досить недорогими пристроями, релейні стабілізатори відрізняються високою швидкодією (див. «Швидкість спрацьовування») і широким діапазоном вхідної напруги (див. нижче). Водночас реле дає досить велику похибку (див. «Точність вихідної напруги») і слабо пристосована до роботи з великими струмами і різкими стрибками напруги (наприклад, при використанні зварювального апарата) — висока ймовірність перегорання контактної групи. Тому моделі цього типу здебільшого розраховані на нескладні умови, де не потрібно високої точності, ні потужності — наприклад, вони добре підходять для підключення окремих побутових приладів. Крім того, зазначимо, що робота реле часто пов'язана зі значним рівнем шуму (насамперед за рахунок характерного «клацания»); це може створити серйозні незручності при використанні в житлових приміщеннях.

Тиристорний. Пристрій тиристорних стабілізаторів багато в чому схоже з описаними вище релейними: зокрема, є такою ж трансформатор з набором окремих висновків для східчастого регулювання. Однак перемикання між обмотками здійснюється не за допомогою реле, а за допомогою напівпровідникових приладів...— тиристорів. Принцип їх роботи також схожий з реле: тиристор здатний замикати і розмикати ланцюг з потужними струмами, отримуючи керуючі команди за допомогою слабких сигналів. Головним же конструктивною відмінністю тиристорних стабілізаторів, що дає їм перевагу над релейними, є відсутність контактної групи. Це дозволяє підключати до таких пристроїв досить потужне навантаження, точність їх роботи досить висока, а шум при перемиканні, на відміну від релейних схем, практично відсутня. З іншого боку, тиристори чутливі до перегріву і вимагають установки активних систем охолодження (див. нижче), що відповідним чином позначається на ціні і габаритах пристрою.

— Симісторний. Стабілізатори, які побудовані на симісторах (симетричних тиристорах). По суті являють собою різновид описаних вище тиристорних пристроїв, і з практичної сторони нічим від них помітно не відрізняються — ні переваг, ні по недоліків.

Електромеханічний. Дія таких стабілізаторів засновано на роботі електромотора (його іноді називають сервомотором), який переміщує спеціальний вугільний контакт безпосередньо по обмотках трансформатора. Залежно від стану контакту змінюється кількість витків обмотки, включених в роботу; таким чином і здійснюється регулювання напруги. Подібні моделі вважаються одними з кращих по співвідношенню «ціна/якість», вони поєднують невисоку вартість з відмінною точністю і плавністю регулювання. Водночас швидкість спрацьовування в них безпосередньо залежить від ступеня зміни вхідної напруги: чим сильніше стрибок — тим більшу відстань по обмотках повинна пройти щітка. Відповідно, електромеханічні стабілізатори погано підходять для роботи з різкими перепадами в мережі, а тому, щоб уникнути неприємних наслідків діапазон вхідних напруг (див. нижче) у них зазвичай досить неширок. Крім цього, щітка при постійному русі стирається, що вимагає періодичної чистки трансформатора і заміни самої щітки; однак така необхідність виникає нечасто і звичайно не викликає труднощів. Робота сервомотора створює деякий шум, але загалом моделі цього типу працюють тихіше, ніж релейні (хоча й відчутно голосніше напівпровідникових).

Ферорезонансний. Один з перших типів стабілізаторів, що випускаються серійно. Конструкція такого пристрою заснована на парі котушок, що нагадує класичний трансформатор. Характеристики котушок підібрані таким чином, щоб при перевищенні вхідної напруги «зайва» частина магнітного потоку з вхідних котушки відводилася в т. зв. магнітний шунт, а магнітний потік через вихідну котушку (і, відповідно, напруга на її виходах) залишався постійним. Завдяки цьому ферорезонансні моделі відрізняються високою швидкістю і плавністю роботи, хорошою точністю, а також простий і недорогий конструкцією. З іншого боку, такі стабілізатори не здатні видавати рівний синусоїдальний струм, сильно залежать від частоти струму на вході, створюють перешкоди на лінії (що вимагає застосування фільтрів при підключення чутливої електроніки), мають малий діапазон вхідних напруг і потужностей навантаження (нездатні працювати вхолосту або з перевантаженням). Крім того, пристрої даного типу важкі і громіздкі. Внаслідок цього вони вважаються застарілими і застосовуються відносно рідко.

Комбінований. Різновид стабілізаторів, що поєднує в конструкції елементи релейних і електромеханічних моделей. Зазвичай, для невеликих стрибків напруги в них використовується підстроювання за допомогою електромотора; реле, зі свого боку, відіграє роль страховки і включається в дію при значних відхиленнях, з якими електромеханічна частина не може впоратися «поодинці». Завдяки цьому в одному пристрої вдалося поєднати переваги обох варіантів — високу точність налаштування і широкий діапазон вхідних напруг. Правда, деякі недоліки цей тип стабілізаторів також успадкував — зокрема, необхідність чистити щітку і шум при спрацьовуванні реле (хоча останнє трапляється рідше, ніж в чисто релейних моделях). Крім того, вартість таких агрегатів зазвичай досить висока.

Подвійного перетворення. Принцип дії даного типу стабілізаторів полягає в перетворення змінного струму в постійний (за допомогою випрямляча) і потім назад в змінний (за допомогою інвертора). Інвертор налаштований таким чином, щоб видавати практично еталонне напруга і синусоїду у всьому робочому діапазоні вхідної напруги. Таким чином, головною перевагою стабілізаторів подвійного перетворення є висока точність вихідного сигналу, такі пристрої підходять навіть для делікатних компонентів зразок телевізорів або акустичних систем. Крім того, діапазон вхідної напруги виходить досить широким, реакція на скачки напруги — практично миттєвою, а за рахунок відсутності рухомих частин стабілізатор працює тихо і живе довго. Головними недоліками таких приладів є висока вартість і відносно низький ККД (близько 90 %).

Потужність

Максимальна активна потужність навантаження, допустима для даної моделі.

Активної називають потужність, яка в приладах змінного струму витрачається на корисну роботу або на виділення тепла. Крім неї, такі прилади споживають також реактивну потужність — вона йде на роботу специфічних компонентів, насамперед конденсаторів і котушок індуктивності. Повна потужність, що позначається в вольт-амперах (кіловольт-амперах), є сумою активної і реактивної, про неї див. нижче. Тут же відзначимо, що в нескладних побутових ситуаціях для розрахунків вистачає даних про активної потужності, яка вказується у ватах. Зокрема, саме цей параметр вважається ключовим при виборі стабілізаторів для пральних машин і для посудомийних машин: у першому випадку оптимальною вважається потужність від 2 до 5 кВт, у другому — від 1,8 до 2,5 кВт.

В будь-якому випадку, загальна активна потужність підключеного навантаження не повинна перевищувати цифр, зазначених у характеристиках стабілізатора. Для повної гарантії не завадить взяти певний запас, однак цей запас не повинен бути занадто великим — збільшення допустимої потужності помітно впливає на габарити, вагу та ціну пристрою. Також зазначимо, що існують формули, які дозволяють перевести активну споживану потужність в повну з урахуванням типу підключеного електроприладу; ці формули можна знайти в спеціальних джерелах.

Діапазон вхідної напруги

Діапазон напруги на вході стабілізатора, при якому він здатний працювати в штатному режимі і видавати на навантаження незмінне напруга в 230 або 400 В (залежно від кількості фаз, див. вище). Чим ширше цей діапазон, тим універсальніше пристрій, тим більш серйозні перепади напруги воно здатне погасити без виходу за штатні параметри роботи. Однак потрібно враховувати, що цей параметр є не єдиним і навіть не далеко не основним показником якості роботи: багато що залежить також від точності вихідної напруги і швидкості спрацьовування (обидва пункти див. нижче).

Також відзначимо, що деякі моделі можуть мати кілька режимів роботи (наприклад, з подачею на вихід 230 В, 230 або 240 В). У цьому випадку в характеристиках вказується загальний діапазон вхідної напруги, від найменшого мінімального до найбільшого максимального; фактичні ж діапазони для кожного конкретного режиму будуть відрізнятися.

Крім того, зустрічаються стабілізатори, здатні працювати і поза штатного діапазону вхідної напруги: при невеликому відхиленні за його межі пристрій забезпечує відносно безпечні показники на виході (також з деякими відхиленнями від номінальних 230 або 400 В), якщо ж падіння або зростання стають критичними — спрацьовує відповідний захист (см нижче).

Точність вихідної напруги (±)

Найбільше відхилення від номінальної напруги на виході (230 В або 400 В, залежно від кількості фаз), яке стабілізатор допускає під час роботи у штатному діапазоні вхідних напруг (див. вище). Чим менше це відхилення — тим більш якісно працює пристрій, тим точніше вона підлаштовується під «зміни обстановки» і тим меншим коливанням напруги піддається підключена навантаження.

При виборі за цим параметром варто враховувати насамперед те, наскільки підключаються прилади вимогливі до стабільності напруги. З одного боку, висока стабільність хороша для будь-якого пристрою, з іншого — вона зазвичай означає і високу ціну. Відповідно, купувати прогресивний " стабілізатор для невибагливої навантаження на зразок лампочок і обігрівачів зазвичай не має сенсу, однак для чутливих пристроїв на зразок аудіосистем або комп'ютерів він може виявитися вельми до речі.

ККД

Коефіцієнт корисної дії стабілізатора — це виражене у відсотках співвідношення між кількістю електроенергії на виході пристрою до кількості енергії на вході. Іншими словами, ККД описує, яку частину отриманої від мережі енергії пристрій передає на підключене навантаження без втрат. А втрати під час роботи будуть неминучі — по-перше, жоден трансформатор не досконалий, а по-друге, керуючі схеми стабілізатора теж вимагають для роботи деякої кількості енергії. Водночас всі ці витрати досить невеликі, і навіть у відносно простих сучасних моделях ККД може досягати 97-98%.

Захист

Від перегрівання. Захист, що запобігає критичному підвищенню температури окремих компонентів стабілізатора — наприклад, при перевантаженні, короткому замиканні або збої в системі охолодження. При перевищенні певного значення температури він відключає пристрій, щоб уникнути поломок і загорянь. Особливо подібні системи важливі для напівпровідникових типів стабілізаторів — тиристорних і симісторних (див. вище). А в деяких моделях дана функція може доповнюватися сигналом про збільшення температури — він спрацьовує за температури, близькій до критичної.

Від високочастотних перешкод. Цей захист гасить перешкоди високої частоти, що надходять на вхід, не даючи їм змогу вплинути на роботу підключених до стабілізатора пристроїв. Подібні перешкоди можуть виникати, наприклад, від електродвигунів, зварювальних апаратів тощо. Так, в аудіосистемах високочастотні спотворення викликають неприємний фон з динаміків. Захист від високочастотних перешкод відфільтровує ці спотворення, забезпечуючи на виході гладку синусоїду.

Від короткого замикання. Система, що захищає стабілізатор при виникненні коротких замикань в підключеному навантаженні. Коротким замиканням називають ситуацію, коли опір в ланцюзі стає близьким до нуля; це призводить до різкого підвищення сили струму, перенавантажує електромережу і сам стабілізатор, а т...акож створює ризик поломки або навіть пожежі. Щоб уникнути неприємних наслідків і передбачається відповідний захист: він відключає навантаження у разі значного перевищення сили струму в ньому. Дана функція є практично обов'язковою в сучасних стабілізаторах.

Від перевантаження. Система безпеки на випадок перевантаження стабілізатора — тобто ситуації, коли повна потужність підключеного навантаження стає більше відповідних показників самого пристрою (див. «Потужність»). Причиною такої ситуації може стати, наприклад, вмикання додаткового споживача або зміна режиму роботи одного з діючих. На відміну від описаного вище короткого замикання, при перевантаженні всі електроприлади працюють штатно, нештатним є режим роботи самого стабілізатора — що може призвести до виходу його з ладу або навіть пожежі. Щоб уникнути цього і застосовується захист від перевантаження. Її конкретна реалізація може бути різною. В одних моделях навантаження відключається одразу, в інших — через деякий час після попереджувального сигналу, що дає користувачеві можливість знизити споживану потужність і уникнути спрацьовування системи.

Від підвищеної / зниженої напруги. Система, що захищає пристрій від занадто низької або дуже високої напруги на вході. Значний вихід за межі діапазону вхідної напруги (див. вище) небезпечний не тільки ризиком пошкодження самого стабілізатора: при таких умовах можливостей пристрою не вистачає для повноцінного захисту підключеного навантаження, що може вилитися в неприємності і для нього. А ця функція запобігає подібним наслідкам: у разі виходу вхідної напруги за межі допустимих значень (вони можуть бути ширше робочих значень, див. «Діапазон вхідної напруги») стабілізатор відключається від мережі. При цьому деякі функції можуть залишатися робочими — наприклад, вольтметр, який дає змогу оцінити «стан справ» у мережі на вході. А в окремих моделях є функція автоматичного вмикання при поверненні напруги в робочі межі.

Розміщення

Настінний. Даний варіант включає два способи установки. Перший, класичний варіант — це підвішування за допомогою кріплень-«вушок» на шурупи, гвоздики або інші аналогічні пристосування. Завдяки цьому пристрій не займає місце на підлозі, до того ж власник може вибрати висоту установки; це особливо корисно в обмежених умовах. Недоліком такого способу, порівняно з підлоговим, можна назвати необхідність «довбати стіни» і меншу придатність до переміщення з місця на місце; крім того, він погано підходить для потужних важких апаратів. Другий різновид настінних пристроїв — компактні малопотужні моделі (зазвичай реле напруги — див. «Пристрій»), що включаються в розетку не через дріт, а за допомогою вилки на самому корпусі. Фактично такий пристрій кріпиться прямо на розетці і не потребує спеціального монтажу.

— Підлоговий. Підлогові моделі вигідно відрізняються від настінних простотою і легкістю в установці: власне, крім рівній поверхні, для них більше нічого і не потрібно. Роль такої поверхні може грати не тільки підлогу, але і полку, стільниця і т. ін. (головне, щоб подібна конструкція витримала вагу стабілізатора), а сама установка обмежується лише тим, щоб перемістити стабілізатор у потрібну точку приміщення. Крім того, легкість по переміщенню з місця на місце обмежується тільки згаданими вагою, а він може бути практично будь-яким. Завдяки цьому серед підлогових моделей зустрічаються варіанти будь-якої доступної потужності та «нашорош...еності». Головним же недоліком даного способу є необхідність місця під стабілізатор на підлозі або іншої поверхні.

Відзначимо, що деякі моделі стандартно допускають як настінний, так і підлогову установку. Подібний пристрій може знадобитися, наприклад, якщо Ви ще не визначилися з конкретним варіантом, або якщо обстановка в будь-який момент може змінитися. Крім того, технічно можливо поставити настінну модель на підлогу, а підлогову — оснастити кріпленнями і повісити на стіну, проте зазвичай подібні хитрощі як мінімум не мають сенсу, а то і можуть призвести до неприємних наслідків (на зразок перегріву або поломки кріплень).

Охолодження

Спосіб відведення тепла від нагрітих елементів стабілізатора.

— Пасивне. Пасивним називають будь-який тип охолодження, який не передбачає примусового відводу тепла і здійснюється лише за рахунок природної теплопередачі і конвекції. У малопотужних стабілізатори цього типу система охолодження як така може взагалі бути відсутнім — кількість тепла, що виробляється відносно невелика, і для його розсіювання в навколишнє середовище буває цілком достатньо природної теплопровідності корпусу і самих деталей. У більш прогресивних моделях можуть встановлюватися радіатори. Головною перевагою будь-якого пасивного охолодження є повна відсутність шуму. Крім того, такі системи коштують недорого, не споживають енергії, що займають відносно небагато місця і дуже надійні — ламатися там, здебільшого, просто нема чому. З іншого боку, вони значно програють активного охолодження в ефективності, а тому слабо підходять для потужних пристроїв, особливо тиристорних і симісторних (див. «Тип»).

— Активне. Активне охолодження передбачає примусовий відвід тепла від компонентів устройтва. Зазвичай воно здійснюється за рахунок поєднання радіаторів з вентиляторами, які «здувають» надлишки тепла за межі корпусу. Такі системи характеризуються надзвичайно високою ефективністю, їх можна застосовувати в стабілізаторах будь-якої потужності, а для напівпровідникових моделей (див. «Тип») активне охолодження просто незамінне. Однак ціною цієї ефективності є високий рівень шуму, а також значні габари...ти і вагу, які відповідним чином позначаються на всьому пристрої. Вентилятори схильні затягувати пил всередину корпусу, тому за ними потрібно стежити і періодично чистити «начинку» стабілізатора; а при поломці вентилятора все охолодження, по суті, виходить з ладу. Крім того, і вартість подібних систем відчутно вище, ніж у пасивних.

Ручка для транспортування

Наявність в конструкції стабілізатора спеціальної ручки для перенесення пристрою з місця на місце. Ця функція стане в нагоді насамперед для потужних і, відповідно, важких пристроїв, тримати які прямо за корпус було б незручно. А у самих «сильних» моделях, які не розраховані на перенесення поодинці, ручок передбачається декілька.
Luxeon WDR-10000VA часто порівнюють
Luxeon LDS-10000VA SERVO часто порівнюють