Тип підшипника
Тип підшипника, що використовується у вентиляторі (вентиляторах) системи охолодження.
Підшипник – це деталь між віссю вентилятора, що обертається, і нерухомою основою, яка підтримує вісь і знижує тертя. У сучасних вентиляторах зустрічаються такі типи підшипників:
—
Ковзання. Дія таких підшипників заснована на прямому контакті між двома суцільними поверхнями, ретельно відполірованими для зниження тертя. Подібні пристосування прості, надійні і довговічні, проте ефективність їх досить невисока — кочення, а тим більше гідродинамічний і магнітний принцип роботи (див. нижче) забезпечують значно менше тертя.
—
Кочення. Також називаються «кульковими підшипниками» оскільки «посередниками» між віссю обертання і нерухомою основою є кульки (рідше — циліндричні ролики), закріплені в спеціальному кільці. При обертанні осі такі кульки котяться між нею і основою, за рахунок чого сила тертя виходить дуже невисокою — помітно нижче, ніж в підшипниках ковзання. З іншого боку, конструкція виходить дорожчою і складнішою, а за надійністю вона дещо поступається як тим же підшипникам ковзання, так і більш прогресивним гідродинамічним пристосуванням (див. нижче). Тому, хоча підшипники кочення в наш час досить широко поширені, проте в цілому вони зустрічаються помітно рідше згаданих різновидів.
—
Гідродинамічний. Підшипники цього типу заповнені спец
...іальною рідиною; при обертанні вона створює прошарок, по якому ковзає рухома частина підшипника. Таким чином вдається уникнути безпосереднього контакту між твердими поверхнями і значно знизити тертя в порівнянні з попередніми типами. Також такі підшипники тихо працюють і вельми надійні. З їх недоліків можна відзначити порівняно високу вартість, проте на практиці цей момент нерідко виявляється непомітним на тлі ціни всієї системи. Тому даний варіант в наш час надзвичайно популярний, його можна зустріти в системах охолодження всіх рівнів — від бюджетних до прогресивних.
— Магнітне центрування. Підшипники, засновані на принципі магнітної левітації: вісь, що обертається, «підвішена» в магнітному полі. Таким чином вдається (як і в гідродинамічних) уникнути контакту між твердими поверхнями і ще більше знизити тертя. Вважаються найбільш прогресивним типом підшипників, надійні і безшумні, проте коштують дорого.Мінімальні оберти
Найменші оберти, на яких здатний працювати вентилятор системи охолодження. Вказуються тільки для моделей, що мають регулятор оборотів (див. нижче).
Чим нижче мінімальні оберти (при тому ж максимумі) — тим ширше діапазон регулювання швидкості і тим сильніше можна уповільнити вентилятор, коли висока продуктивність не потрібна (таке уповільнення дозволяє знизити споживання енергії і рівень шуму). З іншого боку, великий діапазон відповідним чином позначається на вартості.
Макс. повітряний потік
Максимальний повітряний потік, що може створити вентилятор системи охолодження; вимірюється в CFM - кубічних футах за хвилину.
Чим вище кількість CFM - тим ефективніший вентилятор. З іншого боку, висока продуктивність вимагає або великого діаметра (що позначається на габаритах та вартості), або високої швидкості (а вона підвищує рівень шуму та вібрацій). Тому при виборі має сенс не гнатися за максимальним повітряним потоком, а скористатися спеціальними формулами, що дозволяють розрахувати необхідне кількість CFM залежно від типу та потужності компонента, що охолоджується, та інших параметрів. Такі формули можна знайти у спеціальних джерелах. Що ж до конкретних чисел, то найбільш скромних системах продуктивність
вбирається у 30 CFM, а найбільш потужних може становити
понад 80 CFM.
Також варто враховувати, що фактичне значення повітряного потоку на найбільших оборотах зазвичай нижче за заявлений максимальний; докладніше див. «Статичний тиск».
Статичний тиск
Максимальний статичний тиск повітря, створюваний вентилятором під час роботи.
Цей параметр вимірюється наступним чином: якщо вентилятор встановити на глуху трубу, звідки немає виходу повітря, і включити на вдув, то досягнутий у трубі тиск відповідатиме статичному. На практиці ж цей параметр визначає загальну ефективність роботи вентилятора: чим вище статичний тиск (за інших рівних умов) – тим простіше вентилятору «протиснути» необхідний обсяг повітря через простір з високим опором, наприклад, через вузькі щілини радіатора або через набитий комплектуючими корпус.
Також цей параметр використовується в деяких специфічних обчисленнях, однак ці обчислення досить складні і рядовому користувачу, як правило, не потрібні — вони пов'язані з нюансами, актуальними переважно для ентузіастів-комп'ютерщиків. Докладніше про це можна прочитати в спеціальних джерелах.
Напрацювання на відмову
Загальний час, який вентилятор системи охолодження здатний гарантовано пропрацювати до виходу з ладу. Зазначимо, що при вичерпанні цього часу пристрій не обов'язково зламається — зазвичай сучасні вентилятори мають значний запас міцності і здатні пропрацювати ще якийсь період. Водночас оцінювати загальну довговічність системи охолодження варто саме за цим параметром.
Можливість заміни
Можливість
замінити штатний вентилятор силами самого користувача – без звернення до сервісного центру або до фахівців-ремонтників. Максимум, що може знадобитися для такої процедури — найпростіші інструменти на зразок викрутки; іноді вони навіть першопочатково входять до комплекту системи охолодження.
Вентилятор, як найбільш рухома частина будь-якої системи охолодження, більше інших частин схильний до поломок і збоїв. У подібних ситуаціях дешевше (а найчастіше — і розумніше) замінити лише цю частину, а не купувати цілу нову систему. Також, при бажанні, можна поміняти і справний вентилятор — наприклад, на більш потужний або менш шумний.
Розмір помпи
Розміри помпи, якою оснащена система водяного охолодження .
Найчастіше цей параметр вказується за всіма трьома габаритами: довжині, ширині і товщині (висоті). Ці розміри визначають два моменти: простір, необхідне для установки помпи, і діаметр її робочої частини. З першим все досить очевидно; зазначимо тільки, що в деяких системах помпа грає одночасно роль ватерблока і встановлюється прямо на охолоджуваному компоненті системи, і саме там має бути достатньо місця. Діаметр ж приблизно відповідає довжині і ширині помпи (або меншого з цих розмірів, якщо вони неоднакові — наприклад, 55 мм у моделі 60х55х43 мм). Від цього параметра залежить деякі особливості. Так, великий діаметр помпи дає змогу досягти необхідної продуктивності при порівняно невисокій швидкості обертання; останнє, зі свого боку, знижує рівень шуму і підвищує загальну надійність конструкції. З іншого боку, велика помпа коштує дорожче і займає більше місця.
Швидкість обертання помпи
Швидкість, з якою обертається робоча частина помпи, штатно передбаченої в системі водяного охолодження.
Висока швидкість, з одного боку, позитивно позначається на продуктивності, з іншого — підвищує рівень шуму і зменшує час напрацювання на відмову. Тому при тій же продуктивності більш прогресивними вважаються порівняно «повільні» помпи, в яких необхідні обсяги перекачування досягаються за рахунок великого діаметра робочої частини, а не за рахунок швидкості.
Довжина трубки
Довжина трубок, що з'єднують ватерблок з радіатором в системі рідинного охолодження. Таких трубок за визначенням не менше двох (подача і «обратка»), а іноді і більше, проте всі вони мають однакову довжину. Ця довжина відповідає найбільшій відстані від ватерблока до радіатора, можливій для даної системи в штатній комплектації; цей нюанс потрібно обов'язково врахувати, вибираючи водяне охолодження під певне місце встановлення. В цілому, більшість моделей мають довжину
38 або
40 см, чого вистачає для основних потреб.