Фокусна відстань
Фокусна відстань об'єктива телескопа.
Фокусна відстань — це відстань від оптичного центра об'єктива до площини, на яку проєктується зображення (екрана, фотоплівки, матриці), при якому об'єктив телескопа буде видавати максимально чітке зображення. Чим довше фокусна відстань — тим більше збільшення здатний забезпечити телескоп; однак потрібно враховувати, що показники збільшення також пов'язані з фокусною відстанню використовуваного окуляра і діаметром об'єктива (детальніше про це див. нижче). А ось на що цей параметр впливає безпосередньо — так це на габарити приладу, точніше, на довжину тубуса. У разі рефракторів і більшості рефлекторів (див. «Конструкція») довжина телескопа приблизно відповідає його фокусної відстані, а ось моделі дзеркально-лінзового типу можуть бути у 3 – 4 рази коротше фокусної відстані.
Також відзначимо, що фокусна відстань враховується в деяких формулах, що характеризують якість роботи телескопа. Наприклад, вважається, що для хорошої видимості через найпростішу різновидність рефракторного телескопа — т. зв. ахромат — необхідно, щоб його фокусна відстань була не менше, ніж D^2/10 (квадрат діаметра об'єктива, поділений на 10), а краще — не менш D^2/9.
Макс. дозволяюче збільшення
Найбільшу дозволяє збільшення, яке може забезпечити телескоп. Фактично — це збільшення, при якому телескоп забезпечує максимальну деталізацію зображення і дозволяє бачити всі дрібні подробиці, які у нього в принципі можливо побачити. При зниженні ступеня збільшення нижче цього значення зменшується розмір видимих деталей, що погіршує їх видимість, при збільшенні стають помітні дифракційні явища, внаслідок яких деталі починають розпливатися.
Максимальна дозволяє збільшення менше максимального корисного (див. вище) — воно становить десь 1,4...1,5 від діаметра об'єктива в міліметрах (різні формули дають різне значення, однозначно визначити це значення неможливо, оскільки багато що залежить від суб'єктивних відчуттів спостерігача та особливостей його зору). Однак саме з такою кратністю варто працювати, якщо Ви хочете розглянути максимальну кількість деталей — наприклад, нерівності на поверхні Місяця або подвійні зірки. Велике збільшення (в межах максимального корисного) має сенс брати тільки для розглядання яскравих контрастних об'єктів, а також у тому випадку, якщо спостерігач має проблеми із зором.
Мін. збільшення
Найменше збільшення, яке забезпечує телескоп. Як і в разі максимального корисного збільшення (див. вище), в даному випадку мова йде не про абсолютно можливого мінімуму, а про межі, заходити за який не має сенсу з практичної точки зору. В даному випадку цей межу пов'язаний з розмірами вихідного окуляра телескопа — грубо кажучи, цятки світла, проєктованого окуляром на око спостерігача. Чим менше збільшення — тим більша вихідна зіниця; якщо він стає більше, ніж зіницю ока спостерігача, то частина світла в око, по суті, не потрапляє, і ефективність оптичної системи знижується. Мінімальне збільшення — це таке збільшення, при якому діаметр вихідного зіниці телескопа дорівнює розміру зіниці ока в нічних умовах (7 – 8 мм); також цей параметр називають «равнозрачковое збільшення». Використання телескопа з окулярами, що забезпечують менші значення кратності, вважається невиправданим.
Зазвичай, для визначення равнозрачкового збільшення використовують формулу D/7, де D — діаметр об'єктива в міліметрах (див. вище): наприклад, для моделі з апертурою 140 мм мінімальне збільшення становитиме 140/7 = 20х. Однак ця формула справедлива лише для нічного застосування; при спостереженні днем, коли зіницю в оці зменшується в розмірі, фактичні значення мінімального збільшення більше — близько D/2.
Світлосила
Світлосила телескопа характеризує загальну кількість світла, що «захоплюється» системою і передається в око спостерігача. З точки зору цифр світлосила — це співвідношення між діаметром об'єктива і фокусною відстанню (див. вище): наприклад, для системи з апертурою 100 мм і фокусною відстанню 1000 мм світлосила буде складати 100/1000 = 1/10. Також цей показник називають «відносним отвором».
При виборі за світлосилою необхідно насамперед враховувати, для яких цілей планується застосовувати телескоп. Великий відносний отвір дуже зручний для астрофотографії, оскільки забезпечує пропускання великої кількості світла і дає змогу працювати з меншими витримками. А ось для візуальних спостережень висока світлосила не потрібна — навіть навпаки, більш довгофокусні (і, відповідно, менш світлосильні) телескопи характеризуються меншим рівнем аберацій і дають змогу застосовувати для спостереження більш зручні окуляри. Також відзначимо, що велика світлосила потребує застосування великих об'єктивів, що відповідним чином позначається на габаритах, вазі і ціні телескопа.
Роздільна здатність (Rayleigh)
Роздільна здатність телескопа, визначена згідно з критерієм Релея (Rayleigh).
Роздільна здатність в даному випадку — це показник, що характеризує здатність телескопа розрізнити окремі джерела світла, розташовані на близькій відстані, іншими словами — здатність побачити їх саме як окремі об'єкти. Вимірюється цей показник в кутових секундах (1" — це 1/3600 частина градуса). На відстанях, менших, ніж роздільна здатність, ці джерела (наприклад, подвійні зірки) будуть зливатися в суцільну пляму. Таким чином, чим нижчі цифри в даному пункті — тим вища роздільна здатність, тим краще телескоп підходить для розглядування близько розташованих об'єктів. Однак варто враховувати, що в даному випадку мова йде не про можливість бачити повністю окремі один від одного об'єкти, а лише про можливість пізнати в витягнутій світловій плямі два джерела світла, що злилися (для спостерігача) в один. Для того, щоб спостерігач міг бачити два окремі джерела, відстань між ними повинна бути приблизно вдвічі більше заявленої роздільної здатності.
Критерій Релея є теоретичною величиною і розраховується за досить складною формулою, що враховує, крім діаметра об'єктива телескопа (див. вище), також довжину хвилі спостережуваного світу, відстані між об'єктами і до спостерігача і т. ін. Окремо видимими, згідно з даним методом, вважаються об'єкти, розташовані на більшій відстані один від одного, ніж для описаної вище межі Дауеса; тому для одного і того ж телескопа...роздільна здатність по Релею буде нижче, ніж по Дауесу (а цифри, зазначені у цьому пункті — відповідно, більші). З іншого боку, даний показник менше залежить від особистих особливостей користувача: розрізнити об'єкти на відстані, яка відповіднає критерію Релея, можуть навіть недосвідчені спостерігачі.
Посадковий діаметр окуляра
Розмір «посадкового місця» під окуляр, яке передбачене у телескопа. У сучасних моделях використовуються гнізда стандартних розмірів — найчастіше 0,96", 1,25" або 2".
Цей параметр стане в нагоді насамперед у тому випадку, якщо Ви хочете купити окуляри окремо: їхній посадковий діаметр повинен відповідати характеристикам телескопа. Втім, 2" гнізда допускають встановлення окулярів на 1,25" через спеціальний адаптер, але зворотний варіант неможливий. Зазначимо, що телескопи з посадковим діаметром 2" вважаються найбільш прогресивними, оскільки під цей розмір випускається, крім окулярів, безліч додаткових аксесуарів (коректори спотворень, фотоадаптери, тощо), а самі 2" окуляри забезпечують більш широке поле зору (щоправда, і коштують дорожче). Зі свого боку «вічка» на 1,25" застосовуються у відносно недорогих моделях, а на 0,96" — у найпростіших телескопах початкового рівня з невеликими об'єктивами (зазвичай до 50 мм).
Дзеркало
Тип дзеркала, встановленого в рефлекторі або комбінованій моделі (див. «Конструкція»).
Нагадаємо, дзеркало в таких моделях виконує ту ж функцію, що і лінза об'єктива в класичних телескопах-рефракторах — тобто безпосередньо відповідає за збільшення зображення. Тип дзеркала вказується за його загальною формою:
— Сферичне. Найбільш поширений варіант, що пов'язано в першу чергу з простотою виробництва і, як наслідок, невисокою вартістю. З іншого боку, сферичне дзеркало чисто технічно не здатне так ефективно сконцентрувати пучок світла, як це робить параболічне. Через це виникають спотворення, відомі як сферичні аберації; вони можуть привести до помітного погіршення різкості, причому найбільш помітним цей ефект стає на високих кратностях. Правда, є телескопи, практично не схильні до цього явища – а саме довгофокусні моделі, в яких фокусна відстань в 8 – 10 разів перевищує діаметр дзеркала; однак такі прилади виходять громіздкими і важкими. У світлі цього спеціально шукати моделі з таким типом дзеркал варто в основному в двох ситуаціях: або якщо телескоп планується застосовувати на порівняно невеликій кратності (наприклад, для спостережень за Місяцем, планетами, сузір'ями), або якщо вас не бентежать габарити і вага.
—
Параболічне. Дзеркала у формі параболоїда обертання практично ідеально концентрують потрапляючі в телескоп промені в потрібній точці оптичної системи. Завдяки цьому рефлектори з такими оснащенням да
...ють дуже чітке зображення навіть при високій кратності збільшення і незалежно від фокусної відстані. Головний недолік цього типу дзеркал – досить висока вартість, пов'язана зі складністю у виробництві. Так що звертати увагу на параболічні рефлектори має сенс перш за все тоді, коли описані переваги однозначно переважують; характерний приклад — пошук порівняно компактного телескопа для спостереження за об'єктами далекого космосу.Коректор
Наявність коректора коми в комплекті телескопа.
Кома – це особливий тип спотворень (аберацій), до якого схильні переважно рефлектори системи Ньютона. Кома призводить до того, що по краях зображення точкові джерела світла (перш за все зірки) починають змазуватися і ставати схожими на комети, хвости яких спрямовані від центру зображення; причому чим більше видалення від цього центру — тим сильніше змазування. Це не особливо критично для спостережень, проте може помітно «зіпсувати життя» астрофотографу – тим більше що для зйомки бажано використовувати світлосильні телескопи, а збільшення світлосили веде до посилення коми.
Для усунення цього явища і використовуються коректори. Такі пристосування являють собою лінзи особливої конструкції, що встановлюються за головним дзеркалом (якщо дивитися по ходу руху світла). При цьому якщо усунення коми для вас принципово важливо — краще придбати модель, що першопочатково постачається з подібною лінзою: це дасть гарантію, що телескоп в принципі сумісний з коректором, а також позбавить зайвого клопоту з пошуку та підбору такого аксесуара.
Кріплення труби
Спосіб кріплення труби до монтування, передбачений в телескопі.
У наш час використовується три основних таких способу:
кільце,
гвинт,
пластина. Ось більш докладний опис кожного з них:
- Кріпильні кільця. Пара кілець з гвинтовими затискачами, встановлених на монтуванні. Внутрішній діаметр кілець приблизно відповідає товщині труби, а затягування гвинтів забезпечує щільну фіксацію. При цьому тубус телескопа, як правило, не має будь-яких спеціальних упорів і утримується в кільцях виключно за рахунок сили тертя. На практиці це дозволяє, послабивши гвинти, зрушити трубу вперед або назад, підібравши оптимальне положення під ту чи іншу ситуацію. Однак тут варто бути обережним: занадто велике зміщення кріплення від середини, особливо в рефракторах з великою довжиною труби, може порушити рівновагу всієї конструкції.
Як би там не було, кільця досить прості і в той же час зручні і практичні, а сумісність з ними обмежується виключно діаметром тубуса. У світлі цього саме даний тип кріплення найбільш популярний в наш час. Його недоліками можна назвати необхідність самостійно підбирати досить стабільне положення телескопа, а також стежити за надійною затягуванням гвинтів — їх ослаблення може привести до прослизання тубуса і навіть його випадання з кілець.
- Кріпильна пластина. Фактично мова йде про кріплення типу «ластівчин хвіст». На корпусі те
...лескопа для цього передбачається спеціальна рейка, а на монтуванні — платформа з пазом. При установці труби на монтування рейка засувається в паз з торця і фіксується спеціальним пристосуванням на зразок засувки або гвинта.
Одним з ключових переваг кріпильних пластин є простота і швидкість монтажу і демонтажу телескопа. Так, відкрутити і закрутити єдиний гвинт фіксатора простіше, ніж возитися з гвинтовим кріпленням або затяжками на кільцях — тим більше що в багатьох моделях цей гвинт можна крутити руками, без спеціального інструменту. А вже про засувках і говорити не доводиться. Недоліком даного варіанту можна назвати вимогливість до якості матеріалів і точності виготовлення — інакше може з'явитися люфт, здатний помітно «зіпсувати життя» астроному. Крім того, подібне кріплення має дуже обмежені можливості по переміщенню телескопа вперед-назад на монтуванні, а то і зовсім не має їх; а планки і пази можуть відрізнятися за формою і розмірами, що дещо ускладнює підбір сторонніх монтувань.
— Кріпильний ґвинт. Монтування з таким кріпленням мають посадочне місце у вигляді літери Y, між «рогами» якої і встановлюється телескоп. При цьому він з обох сторін прикріплюється до рогів гвинтами, які вкручуються прямо в тубус; гвинтів передбачається мінімум по два з кожного боку, щоб труба не могла самостійно повернутися навколо точки кріплення.
В цілому цей варіант фіксації відрізняється високою надійністю і зручністю в процесі використання телескопа. Гвинти щільно, без люфтів, тримають тубус; при їх ослабленні може хіба що з'явитися той самий люфт, але і тільки; крім того, телескоп втримається на монтуванні і не впаде, якщо хоч один гвинт залишається хоча б частково закрученим. Крім того, місце фіксації зазвичай розміщується в районі центру ваги, що за замовчуванням забезпечує оптимальний баланс і позбавляє користувача від необхідності самостійно підшукувати точку кріплення. З іншого боку, установка і зняття труби в таких монтуваннях вимагає більше часу і клопоту, ніж в описаних вище системах; а розташування отворів під гвинти і кріпильна різьба в різних моделях, як правило, різні, і конструкції цього типу зазвичай не є взаємозамінними.