Polska
Katalog   /   Sprzęt fotograficzny   /   Przyrządy optyczne   /   Mikroskopy
Mikroskopy BRESSER 

Mikroskopy: specyfikacje, typy, rodzaje

Przeznaczenie

Ogólne przeznaczenie mikroskopu.

Obecnie dostępne są 4 główne opcje zastosowania: mikroskop dziecięcy, edukacyjny, laboratoryjny i specjalistyczny. Jednocześnie różne opcje (przynajmniej z trzech pierwszych) można z powodzeniem łączyć w jednym modelu - np. najprostsze i najtańsze mikroskopy edukacyjne można z powodzeniem pozycjonować jako mikroskopy dziecięce, a te najbardziej zaawansowane także jako laboratoryjne . A oto szczegółowy opis różnych opcji docelowych:

- Dziecięce. Najprostsze i najtańsze mikroskopy, przeznaczone przede wszystkim dla dzieci stawiających pierwsze kroki w naukach przyrodniczych (a także dla innych niewymagających użytkowników, którzy nie potrzebują szczególnie zaawansowanej funkcjonalności). W związku z tym w takich urządzeniach brakuje zaawansowanych funkcji, takich jak blokada ostrości, oświetlenie według metody Koehlera, wyjścia wideo (dla modeli cyfrowych i opto-cyfrowych), trinokular z możliwością podłączenia kamery itp. Dodatkowo korpus może być wykonany w jasnych kolorach , a plastik jest zwykle używany jako materiał na korpus. Niemniej jednak wiele mikroskopów dziecięcych jest wyposażonych w obrotowe głowice umożliwiające szybką regulację powiększenia, a całkowite powiększenie może znacznie przekroczyć 600x „po wyjęciu z pudełka” i 1000x w konfiguracjach z najwyższej półki.

- Ed...ukacyjny. Mikroskopy dobrze nadające się do użytku edukacyjnego; czasami takie spotkanie jest nawet bezpośrednio wskazane przez producenta. Specyficzna funkcjonalność takich modeli jest dość zróżnicowana, typ może być również różny (zarówno biologiczny, jak i stereoskopowy). Ogólnie rzecz biorąc, urządzenia tej specjalizacji zajmują pozycję pośrednią między prostymi i niedrogimi mikroskopami dziecięcymi a zaawansowanym sprzętem laboratoryjnym. Jednocześnie istnieje wiele modeli, które mają wspólny cel - „dziecięcy/edukacyjny” lub „edukacyjny/laboratoryjny”. Pierwszy typ jest prosty i niedrogi, do celów edukacyjnych nadaje się głównie do szkoły; z kolei druga opcja może się przydać nawet na uniwersyteckim wydziale nauk przyrodniczych.

- Laboratorium. Najbardziej zaawansowany typ nowoczesnych mikroskopów, przeznaczony do pełnoprawnych badań laboratoryjnych i innych poważnych zadań. W związku z tym takie modele nie są tanie, ale dają obraz wysokiej jakości i ogólnie mają najszerszą funkcjonalność (choć konkretny zestaw możliwości oczywiście może być inny). Wśród możliwości spotykanych w mikroskopach laboratoryjnych są ruchome stoliki, montaż filtrów świetlnych, 2 rodzaje oświetlenia (dolne i górne), oświetlenie Według metody Koehlera, przydatność do specjalnych metod mikroskopowych (fluorescencyjne, kontrast fazowy) itp.

- Specjalistyczne. Mikroskopy o określonej konstrukcji i przeznaczeniu, w taki czy inny sposób różniące się od bardziej tradycyjnych modeli. Te różnice mogą być różne; w związku z tym konkretna specjalizacja również się różni. Tak więc ostatnio dość dużą popularność zyskały przenośne modele do smartfonów: za pomocą specjalnego spinacza do bielizny takie urządzenie jest przymocowane bezpośrednio do gadżetu naprzeciwko głównego aparatu, a ekran smartfona pełni rolę okularu. Innym popularnym typem są kompaktowe mikroskopy cyfrowe bez własnych ekranów, które są podłączane do komputerów PC lub laptopów przez USB, a nawet do smartfonów przez Wi-Fi (w tym przez Internet). Obejmuje to również profesjonalny sprzęt o dość wąskiej specjalizacji: stereoskopy ze specjalnymi mocowaniami do protetyki dentystycznej, do lutowania mikroukładów itp .; mikroskopy do badań metalurgicznych; urządzenia na statywie z przedłużaczem, przeznaczone do kontroli poszczególnych obszarów na dużych obiektach; mikroskopy porównawcze do badań balistycznych i śladowych w kryminalistyce; itd.

Rodzaj

- Biologiczne. Mikroskopy, pierwotnie przeznaczone do użytku przede wszystkim w biologii i medycynie - do badania komórek, mikroorganizmów i innych podobnych obiektów. Jedną z głównych różnic tego typu mikroskopów od mikroskopów stereoskopowych jest to, że w obiektywie zastosowano tylko jedną soczewkę, a obraz jest płaski (ponadto okular może być pojedynczy lub podwójny, więcej szczegółów patrz „Okular”). Nie można więc oszacować objętości obiektów patrząc przez takie urządzenie. Z drugiej strony mikroskopy biologiczne mogą zapewnić dość wysoki współczynnik powiększenia - do 2000x; a w tych obszarach, w których są stosowane, objętość nie jest wymagana.

- Stereoskopowe. Mikroskopy posiadające soczewkę z parą soczewek i podwójnym okularem. Taka konstrukcja umożliwia patrzenie przez okular obojgiem oczu i jednoczesne oglądanie wiarygodnego obrazu wolumetrycznego. Mikroskopy tego typu przeznaczone są przede wszystkim do naprawy i montażu zegarków i innych drobnych mechanizmów, tworzenia miniatur, lutowania mikroukładów, badań kryminalistycznych itp. Dają stosunkowo małe powiększenie (do 200x, a czasem tylko kilka kilkadziesiąt razy), ale obraz objętościowy pozwala na dokładne władanie instrumentami w polu widzenia. Ponadto duże odległości robocze przyczyniają się do wygody pracy.

Typ

- Optyczne. Tradycyjne mikroskopy wykorzystujące soczewki i inne elementy optyczne. Zapewniają wysoką jakość obrazu i dobry współczynnik powiększenia, a jednocześnie nie są zależne od prądu (poza tym, że system podświetlenia może wymagać baterii). W tego typu mikroskopach stosowane są tradycyjne okulary, ale istnieją oddzielne modele, które pozwalają na podłączenie zewnętrznej kamery i wyświetlenie obrazu na ekranie komputera. Należy również pamiętać, że jest to jedyna zasada stosowana w modelach stereoskopowych (patrz „Typ”)

- Cyfrowy. Mikroskopy tego typu to tak naprawdę aparaty cyfrowe, uzupełnione o potężną optykę powiększającą. Obraz z takiej kamery musi być wyświetlany na ekranie; niektóre modele mają własne wyświetlacze, inne nie i muszą być podłączone do komputera/laptopa. Zaletą pierwszego typu jest niezależność od sprzętu zewnętrznego, zaletami drugiej opcji są kompaktowość i stosunkowo niski koszt. Jednocześnie należy zauważyć, że pod względem powiększenia większość mikroskopów cyfrowych ustępuje mikroskopom optycznym, a zasada ta nie jest odpowiednia dla obrazów stereoskopowych.

- Optyczno-cyfrowe. Mikroskopy łączące cechy modeli optycznych i cyfrowych (patrz odpowiednie punkty). Takie modele różnią się od urządzeń „czysto cyfrowych” bardziej zaawansowaną optyką, z wieżyczką i dużym powiększeniem; z optycznego - wbudowana kamera i zastosowanie...ekranu jako okularu (okulary tradycyjne nie są stosowane w modelach optyczno-cyfrowych).

Powiększenie

Zakres powiększeń zapewnianych przez urządzenie wynosi od minimalnego do maksymalnego.

Powiększenie mikroskopu oblicza się według wzoru „powiększenie okularu pomnożone przez powiększenie obiektywu”. Na przykład obiektyw 20x z okularem 10x da powiększenie 10 * 20 = 200x. Nowoczesne mikroskopy mogą być wyposażone w wieloobiektywowe głowice obrotowe, obiektywy zmiennoogniskowe (patrz poniżej) oraz wymienne okulary - dzięki czemu w większości modeli można regulować powiększenie. Pozwala to na dostosowanie urządzenia do różnych sytuacji: gdy trzeba zobaczyć drobne szczegóły, stosuje się duży stopień powiększenia, ale aby poszerzyć pole widzenia, należy je zmniejszyć.

Szczegółowe zalecenia dotyczące optymalnych krotności dla różnych zadań można znaleźć w dedykowanych źródłach. Tutaj zauważamy, że wielu producentów podchodzi do sztuczki i wskazuje maksymalną wartość powiększenia pod względem stopnia powiększenia uzyskanego z dodatkową soczewką Barlowa. Taki obiektyw może naprawdę poważnie zwiększyć powiększenie, ale nie jest faktem, że obraz okaże się wysokiej jakości; aby uzyskać więcej informacji, patrz „Zawartość opakowania”.

Metoda badania

Metody badawcze mające zastosowanie w tym modelu mikroskopu.

- Jasne pole. Najbardziej znana i szeroko stosowana metoda mikroskopii świetlnej. W takich badaniach rozważany obiekt umieszczany jest na jasnym tle, na którym wygląda ciemniej. Należy pamiętać, że do badań można stosować różne metody oświetlenia: na wprost, ukośnie, odbite. Pierwsza opcja (kiedy światło lampy lub lustra pod sceną przebija się przez próbkę) jest optymalna do badania przezroczystych próbek, których kluczowe szczegóły są ciemniejsze niż ogólne tło. Typowymi przykładami są cienkie skrawki tkanki zwierzęcej i roślinnej. Światło skośne jest podobne w konkretnym zastosowaniu, ale daje szare tło i jest gorsze od światła bezpośredniego pod względem wydajności podświetlenia, ale zapewnia bardziej wypukły obraz. Jeśli chodzi o światło odbite, w tym przypadku jest ono niezastąpione przy badaniu obiektów nieprzezroczystych: próbek rud i innych materiałów, płytek półprzewodnikowych itp. tła (przy oświetleniu przelotowym) lub dawaniu zauważalnych odbić/cieni (przy świetle odbitym).

- Ciemne pole. Swego rodzaju przeciwieństwo badań w jasnym polu: badany obiekt lub jego poszczególne elementy są jaśniejsze od otaczającego tła. Nie jest to jednak tylko „negatywny” obraz, ale osobna metoda o własnych cechach. Oświetlenie w mikroskopii ciemnego pola jest zwykle przepuszczane, ale odbywa się to w specyficzny sposób: środek wiązki światła jest blokowany przez osłonę, a „walc” świetlny, przechodząc prz...ez soczewkę kondensora, zamienia się w „klepsydrę”. ”. Jednocześnie w najwęższym miejscu takiego „zegara” znajduje się preparat, a w kierunku obiektywu stożek światła rozszerza się tak, że nie wpada w optykę. W ten sposób użytkownik widzi przez mikroskop tylko światło rozproszone przez preparat i ciemne tło wokół niego. Ta metoda badań pozwala między innymi zidentyfikować „gładkie” szczegóły, które nie wyróżniają się ostro na tle otoczenia i nie są widoczne podczas badania w jasnym polu. Wśród zastosowań mikroskopii ciemnego pola - praca z niebarwionymi preparatami biologicznymi (komórki, próbki tkanek, mikroorganizmy), a także badanie niektórych materiałów przezroczystych pod kątem drobnych defektów powierzchniowych.

- Kontrast fazowy. Metoda stosowana do badania przezroczystych i bezbarwnych obiektów o niejednorodnej strukturze, stosowana, gdy tej niejednorodności nie można wykryć za pomocą bardziej tradycyjnej mikroskopii jasnego pola. Ideą tej metody jest to, że kiedy światło przechodzi przez struktury o różnych współczynnikach załamania światła, otrzymuje różne zmiany fazowe. Zmiany te nie są widoczne w konwencjonalnej optyce, jednak można je uwidocznić za pomocą specjalnego sprzętu - kondensora i specjalnie zaprojektowanego obiektywu. W związku z tym taki sprzęt jest koniecznie objęty zakresem dostawy mikroskopu.

- Fluorescencyjny. Metoda ta przewiduje oświetlanie obserwowanych obiektów światłem o określonej długości fali, pod wpływem którego te obiekty lub ich poszczególne elementy zaczynają świecić, a tło pozostaje ciemne. W razie potrzeby do preparatu wprowadza się barwniki poprawiające jasność (typowym przykładem są obiekty biologiczne, z których większość sama słabo fluoryzuje). Do oświetlenia z reguły stosuje się promieniowanie UV, dlatego ta metoda jest również nazywana mikroskopią ultrafioletową; obraz wchodzi do okularu mikroskopu przez filtr, który odfiltrowuje promienie UV, ale swobodnie przechodzi przez widoczną poświatę preparatu.
Jedną z głównych cech mikroskopii fluorescencyjnej jest jej wysoka rozdzielczość: pozwala wyraźnie zobaczyć nawet bardzo małe obiekty niedostępne dla oka w zwykłym widzialnym zakresie. W rzeczywistości, pod względem rozdzielczości, ta metoda jest pomiędzy klasyczną mikroskopią optyczną a mikroskopią elektronową; jednocześnie, w przeciwieństwie do mikroskopów elektronowych i atomowych, urządzenia ze wsparciem metody UV pozwalają uwzględnić nawet „wypychanie” żywych komórek i mikroorganizmów. A niektóre specjalne wersje tej techniki umożliwiają uzyskanie powiększenia nie mikro, ale nanoskopowego. Drugim popularnym sposobem wykorzystania mikroskopii fluorescencyjnej jest wykrywanie cząstek, pierwiastków, wtrąceń itp., które nie są widoczne w zwykłym świetle, ale dobrze wyróżniają się w świetle ultrafioletowym. Typowym przykładem jest powierzchnia wielu metali i stopów.

Przenośny

Ta kategoria obejmuje małe mikroskopy, które zostały pierwotnie zaprojektowane do noszenia i używania „w terenie” poza laboratorium. Niektóre z tych urządzeń są porównywalne pod względem wielkości i wagi do latarek kieszonkowych. Powiększenie mikroskopów przenośnych jest małe - do 100 - 200x, w niektórych modelach nawet do 500x; jednak do tego zastosowania nie jest wymagany wysoki współczynnik powiększenia. Takie urządzenia są cenione przez jubilerów, biegłych sądowych i innych specjalistów, którzy często muszą prowadzić badania w terenie.

Odwrócony

W mikroskopach odwróconych mechanizm jest umieszczony „do góry nogami”: obiektyw znajduje się pod stolikiem przedmiotowym, a system oświetlenia na górze (jednak jego obecność nie jest obowiązkowa). Umiejscowienie okularu nie różni się zasadniczo od tradycyjnej konstrukcji, obraz przekazywany jest do niego poprzez układ pryzmatów. Ponadto w takich modelach stosowane są obiektywy długoogniskowe, które umożliwiają uzyskanie grubości szkła nakrywkowego 1,5 mm lub nawet więcej (w konwencjonalnych mikroskopach dopuszczalna grubość wynosi zwykle 0,17 mm).

Taka konstrukcja zapewnia szereg zalet w stosunku do tradycyjnej. Po pierwsze, w większości przypadków od dołu najwygodniej jest przeglądać zawartość szalek Petriego i innych szalek z przezroczystym dnem. Po drugie, powierzchnia oporowa i robocza obserwowanego obiektu w mikroskopach odwróconych pokrywają się. W tym miejscu warto przypomnieć, że powierzchnia robocza preparatu dla optymalnej widoczności powinna być prostopadła do osi optycznej obiektywu, a powierzchnia oporowa jest zawsze prostopadła do niej. Dzięki temu w mikroskopach odwróconych nie trzeba tracić czasu na dodatkową regulację pozycji preparatu. Po trzecie, takie przyrządy nadają się do pracy z przedmiotami o bardzo dużych wymiarach na wysokość; a w tych modelach, w których nie ma systemu oświetleniowego lub jest zdejmowany, w ogóle nie ma ograniczeń wysokości (najważniejsze jest to, aby stolik przedmiotowy wytrzymał cięża...r obiektu). Głównymi wadami mikroskopów odwróconych są złożoność i odpowiednio wyższy koszt w porównaniu z klasycznymi odpowiednikami.

Głowica rewolwerowa

Liczba obiektywów w obrotowej głowicy mikroskopu.

Głowica obrotowa to okrągła dysza z kilkoma obiektywami o różnym powiększeniu. Obracając taką dyszę, możesz zmienić aktualnie używany obiektyw; a im więcej obiektywów, tym szerszy wybór użytkownika przy wyborze optymalnego powiększenia mikroskopu. Z drugiej strony duża ilość optyki wpływa na wielkość i cenę urządzenia. W związku z tym większość nowoczesnych mikroskopów ma 34 obiektywy – liczba ta jest uważana za optymalną pod względem funkcjonalności i ceny.

Obiektyw

- Obiektyw zmiennoogniskowy. Obiektyw o zmiennym powiększeniu. Taka optyka pozwala na płynną zmianę ogólnego powiększenia mikroskopu w określonych granicach, bez zmiany obiektywu/okularu i nawet bez odrywania się od obserwacji. Z drugiej strony obiektywy zmiennoogniskowe są bardziej skomplikowane i droższe niż optyka o stałym powiększeniu. W związku z tym stosuje się je głównie w mikroskopach stereoskopowych (patrz „Typ”): podczas napraw, montażu i innych zadań, do których takie urządzenia są wykorzystywane, niezwykle przydatna jest możliwość płynnej regulacji powiększenia.

- Wielość powiększenia. Współczynnik powiększenia zapewniany przez obiektyw. Parametr ten wraz z powiększeniem okularu wpływa na ogólne powiększenie instrumentu (patrz wyżej). Większość mikroskopów biologicznych (patrz „Typ”) jest wyposażona w kilka obiektywów o różnym powiększeniu na głowicy obrotowej; pozwala to na dostosowanie powiększenia zgodnie z życzeniem użytkownika. Standardowe opcje powiększenia takich obiektywów to 4x, 10x, 40x, 100x.

- Achromatyczny. Jeden z rodzajów korekcji kolorów stosowanych w soczewkach. Konieczność korekcji barw wynika z tego, że światło o różnych kolorach jest różnie załamywane przez soczewki, a bez dodatkowych środków obraz w mikroskopie rozmazałby się z tęczowymi plamami. Achromatyczna to jeden z najprostszych rodzajów korekcji kolorów, w takiej optyce korygowane są zniekształcenia kolorów w kolorze żółtym i zielony...m. Obiektywy-achromaty wyróżniają się prostotą konstrukcji i niskim kosztem. Co prawda jakość obrazu w nich jest daleka od ideału: taki obiektyw daje wyraźny obraz tylko w środku obrazu, szerokość pola ostrości wynosi około jednej trzeciej całkowitej szerokości pola widzenia, a czerwony - na krawędziach obrazu mogą pojawić się niebieskie plamy. Jest to jednak wystarczające do ogólnej znajomości, wstępnego szkolenia, a często do poważniejszych zadań.

- Planachromat. Ulepszona i dopracowana różnorodność obiektywów achromatycznych (patrz wyżej). W planachromatach przewidziana jest dodatkowa korekcja krzywizny pola, dzięki której obszar wyraźnie widocznego obrazu w takich soczewkach wynosi co najmniej 2/3 całkowitej szerokości pola widzenia, a często nawet więcej. Są to soczewki, które są zalecane do poważnych badań i profesjonalnego użytku.

- Średnica osadzenia. Rozmiar gwintu używanego do mocowania obiektywu. Większy otwór zwykle oznacza szerszą soczewkę obiektywu, co oznacza wyższą aperturę i lepszą jakość obrazu. Z drugiej strony duży rozmiar wpływa na wymiary, wagę i koszt optyki. We współczesnych mikroskopach spotyka się głównie średnice od 20 do 35 mm. Znając rozmiar gwintu, możesz zakupić soczewki zamienne lub zamienne do urządzenia.

Okular

- Monokular. Okular jednosoczewkowy, który można oglądać tylko jednym okiem. Z oczywistych względów jest używany tylko w mikroskopach biologicznych (patrz Typ). Zaletami monokularów są przede wszystkim mniejsze rozmiary i koszt niż inne odmiany; ponadto nie wymagają dopasowania między źrenicami. Z drugiej strony ciągłe patrzenie przez okular jednym okiem jest męczące, więc ta opcja słabo sprawdza się w sytuacjach, w których trzeba często i długo zaglądać w mikroskop.

- Lornetka. Podwójny okular, który można oglądać obydwoma oczami jednocześnie. Należy zauważyć, że taka optyka jest używana nie tylko w mikroskopach stereoskopowych, pierwotnie przeznaczonych do oglądania obiektu przez dwa obiektywy (patrz „Typ”), ale także w mikroskopach biologicznych z jednym obiektywem. Faktem jest, że o wiele wygodniej jest zajrzeć do urządzenia optycznego dwojgiem oczu niż jednym, oczy są mniej obciążone, a zmęczenie nie pojawia się tak szybko. Dlatego do poważnych zadań związanych z częstym używaniem mikroskopu najlepszą opcją są lornetki (lub trinokulary, patrz poniżej). Taka optyka jest droższa niż jednookularowa, ale rekompensuje to łatwość obsługi.

- Trinokularowy. Różnorodne lornetki (patrz odpowiedni punkt), uzupełnione o trzeci kanał optyczny dla specjalnej kamery wideo okularowej. Taka kamera jest zwykle podłączona do komputera PC lub laptopa; instalując go w gni...eździe na trzeci okular można wykonywać zdjęcia i filmy, a także wyświetlać obraz w czasie rzeczywistym na ekranie komputera. Jednocześnie możesz normalnie patrzeć przez mikroskop. Urządzenia trinokularowe są wysoce funkcjonalne i wszechstronne, ale złożone i drogie.

- Wyświetlacz LCD. Mikroskop posiada ekran LCD, który zastępuje tradycyjny okular. Nie trzeba za każdym razem pochylać się nad takim urządzeniem, aby obejrzeć obraz, co jest bardzo wygodne, jeśli obserwacje trzeba połączyć z robieniem notatek i innymi podobnymi czynnościami. Mikroskopy tej konstrukcji mają zwykle funkcję fotografowania i nagrywania wideo, a także różne wbudowane narzędzia - na przykład siatkę skali do oceny wielkości widocznych obiektów, wyświetlanych bezpośrednio na ekranie. Ponadto obraz na ekranie może zobaczyć nie tylko bezpośredni użytkownik, ale także każdy, kto znajduje się w pobliżu; takie możliwości są niezbędne podczas szkoleń, konsultacji, prezentacji itp. Z drugiej strony takie mikroskopy są nieporęczne i drogie.

- Wielość powiększenia. Powiększenie zapewniane przez okular. Parametr ten, wraz z powiększeniem obiektywu, wpływa na ogólne powiększenie urządzenia (patrz wyżej). Klasyczna opcja dla okularów w mikroskopach to 10x, ale zdarzają się też wyższe wartości. W zestawie może znajdować się kilka okularów o różnym powiększeniu - w celu zmiany ogólnego stopnia powiększenia. Istnieje oznaczenie wielokrotności z indeksem alfabetycznym, na przykład WF10x. Oznacza to, że okular ma rozszerzone pole widzenia (WF - szerokie, EWF - extra-wide, UWF - ultraszeroki).

- Nachylenie okularu. Odchylenie okularu determinuje pozycję głowy obserwatora podczas patrzenia przez mikroskop oraz ogólną łatwość obsługi. Według tego wskaźnika można wyróżnić trzy główne opcje: stały kąt, regulowany kąt, brak pochylenia. Stały kąt to najczęściej 30 ° lub 45 ° w stosunku do poziomu, wartości te są uważane za najwygodniejsze. W mikroskopach o regulowanym kącie cały statyw wraz z tubusem i stolikiem mocowany jest do podstawy za pomocą obrotowego mocowania. Jest to najwygodniejsza opcja, pozwalająca dostosować pochylenie do własnych preferencji, ale z czasem montaż ma tendencję do luzowania, dlatego rzadko jest używany w profesjonalnych mikroskopach. Trzeci typ - mikroskopy pionowe, bez nachylenia - nie otrzymały zbyt dużego rozmieszczenia: ta konstrukcja jest używany w niektórych modelach stereoskopowych (patrz "Typ"), aby utrzymać scenę ściśle poziomą (jest to ważne przy niektórych pracach z przedmiotami mikroskopowymi).

- Średnica osadzenia. Średnica nominalna okularu zastosowanego w mikroskopie oraz średnica osadzenia w tubusie do montażu okularu. Nowoczesne mikroskopy wykorzystują kilka standardowych średnic, w szczególności 23 i 27 mm. W praktyce parametr ten jest niezbędny przede wszystkim w przypadku, gdy planowany jest zakup zapasowych lub wymiennych okularów do mikroskopu, lub jeśli „gospodarstwo” ma już okular i należy ocenić jego kompatybilność z tym modelem.

- Korekcja dioptrii. Zakres regulacji dioptrii przewidziany w okularze. Ta korekcja jest stosowana, aby osoba krótkowzroczna lub dalekowzroczna mogła patrzeć przez mikroskop bez okularów lub soczewek kontaktowych. W większości modeli z tą funkcją zakres korekcji wynosi około 5 dioptrii w obie strony; pozwala to na użycie mikroskopu w przypadkach łagodnej do umiarkowanej krótkowzroczności/nadwzroczności.

Obrotowa głowica okularu

Ta cecha oznacza, że okular, w który wyposażony jest mikroskop, może obracać się wokół osi pionowej - innymi słowy w prawo i w lewo. Z reguły zakres obrotu to pełne 360°, jednak dla pełnej gwarancji ten szczegół należy doprecyzować osobno.

Obrotowa głowica okularu nie wpływa na główne cechy i możliwości, jednak zapewnia dodatkową wygodę dla użytkownika: okular można obracać do optymalnej pozycji w zależności od sytuacji. Może się to przydać np. gdy dwóch studentów lub laborantów siedzących obok siebie korzysta z jednego mikroskopu z preparatem – w razie potrzeby każdy może obrócić okular w swoją stronę bez przesuwania całego przyrządu. Odwrotną stroną tej przewagi jest pewna komplikacja konstrukcji i zwiększenie jej ceny.

Odległość między źrenicami

Rozstaw źrenic w mikroskopie wyposażonym w okular "pod dwoje oczu" - binokularowy lub trinokularowy.

W rzeczywistości ten punkt wskazuje odległość między środkami optycznymi okularów. Dla normalnej widoczności musi dokładnie odpowiadać odległości między źrenicami oczu użytkownika – stąd między innymi nazwa „międzyźrenica”. A ponieważ odległość między źrenicami może się znacznie różnić u różnych osób, we wszystkich nowoczesnych mikroskopach (dla których jest to ogólnie istotne), okulary są ruchome, a szerokość ich położenia można regulować. W tym punkcie wskazano odpowiednio zakres takiej regulacji. Najczęściej jest to od 55 do 75 mm - to wystarczy, aby wybrać opcję dla prawie każdego dorosłego użytkownika. Ale są też bardziej rozbudowane zakresy regulacji, głównie z rozszerzeniem w dół - na przykład 52 - 76 mm lub 48 - 75 mm. Takie cechy mogą się przydać zwłaszcza w przypadku mikroskopu dziecięcego.

Maksymalna odległość robocza

Maksymalna odległość robocza, zapewniana przez mikroskop.

Odległość robocza to odległość od obiektywu do badanego obiektu. Parametr ten jest ważny przede wszystkim dla mikroskopów stereoskopowych (patrz „Rodzaj”): im więcej miejsca pozostaje pod obiektywem, tym wygodniej jest pracować z różnymi przyrządami i narzędziami w polu widzenia przyrządu. Należy jednak pamiętać, że maksymalną odległość roboczą uzyskuje się przy minimalnym współczynniku powiększenia, ponieważ wraz ze wzrostem powiększenia obiektyw przychodzi przybliżać do badanego obiektu. W przypadku mikroskopów biologicznych odległość robocza nie ma większego znaczenia: takie przyrządy pracują głównie z preparatami płaskimi, do których obiektyw można zbliżyć niemalże szczelnie.

Stolik przedmiotowy

Typ i/lub rozmiar stolika przedmiotowego, zamontowanego w mikroskopie. Przypomnijmy, że stolik przedmiotowy to powierzchnia, na której umieszczony jest badany preparat.

- Stacjonarny. Stolik przedmiotowy, zamocowany nieruchomo; ustawianie ostrości w takich mikroskopach odbywa się poprzez poruszanie w górę i w dół tubusu z obiektywem i okularem. Takie układy są proste i niedrogie, jednak ustawianie ostrości przy patrzeniu przez ciągle poruszający się okular nie jest zbyt wygodne. Ponadto w przypadku zaawansowanych mikroskopów biologicznych (patrz „Rodzaj”) z binokularem i trinokularem (patrz „Okular”) ten wariant również nie jest odpowiedni z powodu pewnych względów konstrukcyjnych. Natomiast zdecydowana większość mikroskopów stereoskopowych wyposażona jest w stoliki stacjonarne – jest to najrozsądniejsza konstrukcja, biorąc pod uwagę specyfikę zastosowania.

- Ruchomy. W tego typu mikroskopach cały układ optyczny jest sztywno zamocowany na statywie, a stolik przedmiotowy można przesuwać w górę i w dół dla ustawiania ostrości optyki. Taka konstrukcja może występować wyłącznie w mikroskopach biologicznych (patrz „Rodzaj”). Jest nieco bardziej złożona i droższa niż konstrukcja z nieruchomym stolikiem, ale równocześnie jest znacznie wygodniejsza: przy ustawianiu ostrości okular nie porusza się, co pozwala wygodnie regulować obraz bez patrzenia w górę. Ponadto to właśnie ruchomy stolik najbardziej nadaje się do zaawansowan...ych urządzeń z binokularami i trinokularami (patrz „Okular”), prawie wszystkie takie mikroskopy posiadają takie wyposażenie.

Jeśli chodzi o wymiary stolika przedmiotowego, mogą się one wahać od 75x75 mm do 240x200 mm, a nawet więcej. Tutaj przy wyborze warto wziąć pod uwagę planowane wymiary badanych preparatów.

Skala mechaniczna

Obecność nośnika leku w scenografii.

Prowadnica preparacji to urządzenie do płynnego przesuwania szkieł preparacyjnych pod obiektywem mikroskopu, a także do ustalania warunkowych współrzędnych poszczególnych odcinków preparacji. Za ruch odpowiadają mechanizmy, które umożliwiają oddzielne przesuwanie szkła w kierunku wzdłużnym i poprzecznym. Ustalenie współrzędnych zapewniają specjalne skale z noniuszem, dokładność określenia współrzędnych może wynosić od 0,1 do 0,01 mm.

Funkcja ta występuje wyłącznie w mikroskopach biologicznych (patrz Typ). Jego obecność może być niezwykle istotna dla badań związanych z dużymi współczynnikami powiększenia. Bez nośnika leków szkło musiałoby być przesuwane ręcznie, a znalezienie określonych obszarów byłoby trudnym, jeśli nie niemożliwym zadaniem.

Ustawianie ostrości

Rodzaje ogniskowania (fokusowania) przewidziane w mikroskopie. Ogniskowanie odbywa się poprzez zmianę odległości między rozważanym obiektem a soczewką; jego typy mogą być następujące:

- Szorstki. Metoda ta oznacza obecność jednego regulatora obrotowego, który odpowiada za poruszanie obiektywem lub stolikiem. Zaletami tego projektu są prostota i niski koszt. Jednocześnie ustawianie ostrości przy dużych powiększeniach w takich mikroskopach jest dość trudnym zadaniem: trzeba przekręcić gałkę strojenia dosłownie o ułamki milimetra.

- Szorstki / precyzyjny. Ogniskowanie za pomocą dwóch mechanicznych elementów sterujących - do wstępnego ustawiania ostrości i końcowego dostrajania. Takie ustawienie jest samo w sobie wygodniejsze niż tylko surowe (patrz wyżej), a przy dużych powiększeniach jest po prostu niezastąpione. Z drugiej strony obecność dodatkowego regulatora komplikuje i zwiększa koszt projektu, dlatego ta opcja występuje głównie w mikroskopach półprofesjonalnych i profesjonalnych.

- Podręcznik. Metoda, która zakłada brak mechanizmu ogniskowania jako takiego. Celowanie w tego typu urządzeniach odbywa się dzięki temu, że użytkownik ręcznie porusza obiektywem – np. przesuwając go w górę i w dół na pionowym statywie i ustalając w żądanej pozycji za pomocą docisku, lub przechylając go tam i z powrotem na uchwyt obrotowy. Ta opcja jest odpowiednia tylko dla modeli o małym powiększeniu, które nie wymagają specjalnej d...okładności ogniskowania; występuje głównie w mikroskopach cyfrowych bez własnego ekranu (patrz „Zasada działania”), a także w modelach przenośnych (patrz odpowiedni punkt).

Blokada ustawiania ostrości

Możliwość zablokowania mechanizmu ustawiania ostrości mikroskopu. Jedną z wariantów korzystania z tej funkcji jest praca z dużą liczbą leków tego samego typu: blokując zogniskowany mikroskop, możesz zmieniać leki bez marnowania czasu na skupianie się na każdej zmianie. Dodatkowo blokowanie nie zaszkodzi przy pracy z bardzo dużymi prędkościami (od 1000x i wyżej). Ostrość na takich powiększeniach musi być skierowana bardzo dokładnie, a odległość pracy jest niewielka – w efekcie przypadkowo dotykając pokrętła gruboziarnistego ustawiania ostrości można dokładnie strącić ustawienia lub nawet „wbić” obiektyw w preparat. Blokowanie pozwala uniknąć tego rodzaju kłopotów.

Oświetlenie

Rodzaj oświetlenia scenicznego stosowanego w mikroskopie.

- LED (LED). Najbardziej zaawansowany rodzaj podświetlenie do tej pory. Diody LED wytwarzają jasne, białe światło o chłodnym zabarwieniu, które jest optymalne do pracy z przezroczystymi próbkami. Takie źródła światła mogą być wyposażone w ściemniacze. Ponadto podświetlenie LED jest niezwykle energooszczędne i prawie nie generuje niepotrzebnego ciepła. Wszystko to sprawia, że ta opcja jest odpowiednia nawet dla najbardziej zaawansowanych mikroskopów.

- Halogen. Przed pojawieniem się diod LED takie oświetlenie było główną opcją stosowaną w mikroskopach biologicznych (patrz Typ) na poziomach pośrednich i profesjonalnych. Lampy halogenowe zapewniają potężny strumień światła, a jasność podświetlenie jest zazwyczaj regulowana; widmo luminescencji okazuje się dość wygodne do obserwacji, a nagrzewanie jest stosunkowo niskie (choć więcej niż w diodach LED). Pod względem energooszczędności takie oświetlenie jest gorsze od oświetlenia LED, ale przewyższa żarówki.

- Lampa żarowa. Najprostszy i najtańszy rodzaj podświetlenie. Właściwie to niski koszt jest główną zaletą takich systemów. Ale żarówki mają wiele wad. Po pierwsze, dają ciepły blask, który zniekształca odwzorowanie kolorów; dla prostych zadań nie jest to krytyczne, ale w poważnych badaniach jest nie do przyjęcia. Po drugie, lampa bardzo się nagrzewa, co może niekorzystnie wpłynąć na lek. Po trzecie, takie oświetlenie zużywa dużo energii. W r...ezultacie żarówki żarowe można znaleźć wyłącznie w tanich mikroskopach klasy podstawowej, a nawet wśród nich stopniowo stają się przestarzałe.

- Lustro. Oświetlenie za pomocą lustra odbijającego światło z okna, lampy sufitowej lub innego zewnętrznego źródła światła. Zaletami tej opcji są prostota, niski koszt, kompaktowość i całkowita niezależność od źródeł energii. Z drugiej strony taki mikroskop zależy od światła otoczenia, a ustawienie lustra wymaga pewnych umiejętności i z przyzwyczajenia może być dość trudne. Dlatego stosunkowo rzadko stosuje się czyste systemy luster, ale lustro może być dostarczone jako dodatek do innego źródła oświetlenia, na przykład lampy halogenowej.

Oświetlenie górne

Podświetlenie górne to system oświetleniowy, z którego światło kierowane jest od góry do dołu.

W konwencjonalnych (nie odwróconych) mikroskopach takie podświetlenie jest kierowane z obiektywu do stolika przedmiotowego. Przeznaczone jest jest głównie do oglądania obiektów nieprzezroczystych w świetle odbitym. Zwracamy również uwagę, że górne podświetlenie jest bardzo popularne w modelach stereoskopowych - wynika to z cech konstrukcyjnych i użytkowych.

Jeśli chodzi o mikroskopy odwrócone, to w nich podświetlenie górne i dolne są tak naprawdę „zamienione miejscami”. W związku z tym funkcja ta jest przeznaczona do oświetlania preparatów, przez otwór w stoliku przedmiotowym.

Oświetlenie dolne

Iluminacja dolna to system oświetleniowy, którego światło skierowane jest od dołu do góry.

W konwencjonalnych (nieodwróconych) mikroskopach takie oświetlenie jest kierowane na obiektyw przez otwór w stoliku. Jest to ten rodzaj oświetlenia, który jest używany w klasycznej mikroskopii jasnego pola przy użyciu oświetlenia poprzez oświetlenie; w związku z tym dolna pozycja oświetlenia jest tradycyjna w mikroskopach biologicznych i występuje w większości tych modeli. Jednak obecność tej funkcji w „stereoskopach” nie jest typowa, choć też występuje.

Z kolei w mikroskopach odwróconych górne i dolne oświetlenie są faktycznie „zamieniane”. W związku z tym w takich modelach funkcja ta jest przeznaczona do oglądania preparatów (przeważnie nieprzezroczystych) w świetle odbitym, a strumień światła kierowany jest z soczewki na preparat.

Kondensor

Cechy konstrukcji kondensatora zainstalowanego w mikroskopie.

Kondensor jest częścią systemu oświetlenia w mikroskopach biologicznych (patrz „Typ”). Jest to układ optyczny, który w szczególny sposób przetwarza strumień światła wchodzący do szkła preparacyjnego. Różne sytuacje mogą wymagać różnych metod takiego przetwarzania; w związku z tym w mikroskopach można stosować różne typy kondensorów. Jednak najpopularniejszym w naszych czasach jest najprostszy kondensator Abbego. Zapewnia koncentrację wiązki światła i jej równomierny rozkład w polu widzenia. Początkowo takie urządzenie przeznaczone jest do badań metodą jasnego pola, ale może być również wykorzystywane do obserwacji w kontraście fazowym. Kondensor Abbego może być wyposażony w irysową przesłonę aperturową - z jej pomocą można zmniejszyć jasność oświetlenia - oraz filtry barwne.

Inne, bardziej specyficzne typy kondensorów (na przykład fazowe lub ciemnego pola) są zwykle kupowane osobno i rzadko wchodzą w skład standardowego wyposażenia mikroskopu.

W charakterystyce kondensora można wskazać NA - wielkość apertury (efektywnego otwarcia) w milimetrach, na przykład NA=1,2. To dość specyficzny parametr; wystarczy powiedzieć, że jest on wybierany przez producenta do kompletnych obiektywów i nie ma zasadniczego wpływu na wybór mikroskopu.

Diafragma

Rodzaj diafragmy zamontowanej w mikroskopie.

Diafragma częściowo blokuje strumień światła z układu oświetlenia mikroskopu. Służy głównie do regulacji oświetlenia, a także do niektórych bardziej szczegółowych zadań (w szczególności zmiany głębi ostrości). Przy regulacji diafragmy zmienia się średnica jej otworu roboczego i tym samym rzeczywista przepuszczalność światła; a różne typy diafragm (irysowe lub obrotowe) różnią się między sobą cechami regulacji:

— Irysowa. Nazwa pochodzi od łacińskiego słowa oznaczającego tęczówkę oka. Diafragma irysowa składa się z zestawu płatków o specjalnie dobranym kształcie (tzw. lamelek). Przy zamykaniu płatki te przesuwają się od krawędzi otworu roboczego do środka, zmniejszając jego średnicę; przy otwieraniu przesuwają się na zewnątrz. Diafragmy irysowe są bardziej skomplikowane i droższe diafragm obrotowych, jednak mają nad nimi szereg istotnych zalet. Przede wszystkim przepuszczalność światła w całym zakresie roboczym takich urządzeń zmienia się płynnie, co pozwala na jak najdokładniejszy dobór ustawień. Możesz zarządzać ustawieniami nie przerywając obserwacji preparatu; dodatkowo diafragmy irysowe są tak kompaktowe i lekkie, jak to tylko możliwe. W rezultacie to właśnie ta odmiana diafragmy jest najbardziej popularna w mikroskopach klasy średniej i wyżej, a także często spotykana nawet w prostszych modelach.

— Obrotowa. Diafragma tego typ...u to tarcza z otworami różnej wielkości; obracając tarczę można umieszczać różne otwory w polu widzenia mikroskopu i tym samym zmieniać przepuszczalność światła. Głównymi zaletami takich urządzeń są: prostota konstrukcji, niski koszt, niezawodność i łatwość naprawy. Z drugiej strony diafragmy obrotowe są mniej praktyczne niż irysowe — w szczególności są bardzo masywne i nie pozwalają na płynną regulację. W związku z tym, opcja ta jest stosowana głównie wśród mikroskopów klasy podstawowej, gdzie zaawansowane funkcje nie są wymagane — a wręcz przeciwnie, kluczowa jest przystępna cena.

Filtry fotograficzne

Obecność filtrów świetlnych w zakresie dostawy mikroskopu.

W systemie oświetleniowym zainstalowane są filtry świetlne; mogą być zdejmowane lub wbudowane (zwykle na obrotowej płycie). W każdym razie takie urządzenia zmieniają charakterystykę światła, dostosowując je do specyfiki sytuacji. Rodzaje i przeznaczenie filtrów świetlnych mogą być różne, a także ich asortyment w zestawie; niektóre z bardziej powszechnych opcji to:

- Kolor niebieski. Przydatne w przypadkach, gdy do oświetlenia używane jest światło z żarówki lub lampy halogenowej. Filtr ten wyrównuje temperaturę kolorów (balans bieli), dzięki czemu odcienie kolorów są chłodniejsze i zapewniają naturalne odwzorowanie kolorów; jest to szczególnie ważne w przypadku mikrofotografii, ponieważ odpowiednio ustawiony balans bieli ma kluczowe znaczenie dla uzyskania wysokiej jakości zdjęć.

- Kolor żółty. W przeciwieństwie do niebieskiego, obniża temperaturę barwową, nadając obrazowi cieplejszy odcień. Czasami przydaje się również do regulacji balansu bieli, ale żółte filtry mają jeszcze jedno ważne zastosowanie: są dobre do wykrywania niedoskonałości na metalowych powierzchniach.

- Kolor zielony. Obiektywy achromatyczne i planachromatyczne znajdujące się w większości nowoczesnych mikroskopów najlepiej eliminują aberracje w zielonej części widma. Mając to na uwadze, stosuje się podobne filtry: obraz w zielonym odcieniu ma najmniej widoczne zniekształcenie....Ponadto większość obiektywów do mikroskopii z kontrastem fazowym jest również najskuteczniejsza w zielonej części widma (chociaż możliwe są wyjątki).

- Mat (dyfuzor). Białe filtry, które nie zmieniają barwy światła, ale zapewniają dodatkowe rozproszenie. Może to być przydatne zwłaszcza podczas pracy z obiektywami o małym powiększeniu.

- Neutralny. Filtry w różnych odcieniach szarości. Służą do zmniejszania intensywności oświetlenia bez zmiany jego pozostałych cech. Takie gadżety mogą być szczególnie przydatne podczas fotografowania – a mianowicie, jeśli aparat nie ma wystarczająco szybkiego czasu otwarcia migawki. Zwróć uwagę, że podobny efekt można osiągnąć za pomocą przesłony mikroskopu, ale nie zawsze jest to najlepsza opcja do fotografowania. Zawężenie przysłony zmniejsza więc pole widzenia i zwiększa głębię ostrości (ta ostatnia też nie zawsze jest pożądana), a filtry świetlne nie wpływają na te parametry; ponadto w niektórych sytuacjach nawet najwęższa przysłona może nie być wystarczająco „ciemna”.

- Filtry świetlne do preparatów kolorowych. Poprawia widoczność kolorowych elementów. Takie urządzenia są szczególnie popularne w badaniach biologicznych: są to leki najczęściej przetwarzane za pomocą barwników, a ponadto są one najbardziej podatne na blaknięcie barwników, co utrudnia ich oglądanie w normalnym oświetleniu. Zwróć uwagę, że filtry tego typu, w przeciwieństwie do filtrów kolorowych opisanych powyżej, nie malują całego obrazu na określony kolor, a jedynie tłumią wszystkie inne kolory, z wyjątkiem ich „natywnego” koloru.

- Fluorescencyjny. Filtry stosowane w mikroskopii fluorescencyjnej. Dzielą się na dwa typy - ekscytujące (emitujące promieniowanie UV z ogólnego spektrum oświetlenia w celu oświetlenia leku) i ciągnące (chroniące oczy użytkownika przed promieniowaniem ultrafioletowym i jednocześnie wpuszczające fluorescencyjny blask leku).

Wbudowana kamera

Obecność w mikroskopie własnej wbudowanej kamery, która pozwala na fotografowanie i filmowanie obiektów znajdujących się w polu widzenia, a także wyświetlanie obrazu na ekranie zewnętrznym (lub własnym, jeśli jest dostępny). Konkretne cechy zastosowania tej funkcji mogą się różnić w zależności od cech konstrukcyjnych. Tak więc niektóre mikroskopy (głównie przenośne, patrz odpowiedni punkt) działają tylko z zewnętrznymi ekranami, inne mają własne wyświetlacze, jeszcze inne mogą pracować zarówno z własnym jak i z zewnętrznym ekranem. Podobnie mogą różnić się funkcje wykonywania zdjęć / filmów ; więcej szczegółów znajduje się w odpowiednim punkcie.

Liczba megapikseli

Rozdzielczość matrycy aparatu w megapikselach (miliony pikseli).

Im wyższa rozdzielczość matrycy, tym wyższa może być rozdzielczość wideo (patrz poniżej), tym bardziej szczegółowy obraz może dostarczyć kamera. Jednocześnie należy pamiętać, że wraz ze wzrostem liczby megapikseli (bez zmiany rozmiaru matrycy) rozmiar każdego pojedynczego piksela maleje, co zwiększa prawdopodobieństwo wystąpienia szumu i pogorszenia ogólnej jakości obrazu. Dlatego wysoka rozdzielczość sama w sobie niekoniecznie jest oznaką wysokiej jakości – wiele zależy od innych kwestii, na przykład od wielkości matrycy.

Rozdzielczość wideo

Maksymalna rozdzielczość wideo, jaką może przechwycić kamera mikroskopu.

Im wyższa rozdzielczość wideo, im więcej szczegółów na nim zobaczysz, tym mniej szczegółów będzie rozmazanych. Z drugiej strony wysoka rozdzielczość oznacza duże wolumeny materiałów wideo, co w związku z tym wymaga pojemnych nośników pamięci i szybkich kanałów komunikacyjnych do nadawania wideo w czasie rzeczywistym. A wskaźnik ten wpływa na koszt.

Funkcje i możliwości

- Regulacja rozstawu źrenic. Możliwość zmiany odległości między okularami w mikroskopie dwuokularowym lub trójokularowym (patrz "Okular"). Dla normalnej widoczności konieczne jest, aby odległość między soczewkami okularów odpowiadała odległości między źrenicami użytkownika. Odległość ta różni się w zależności od osoby, dlatego to ustawienie może być wymagane do wygodnego użytkowania.

- Regulacja jasności. Możliwość zmiany jasności podświetlenia - w celu dostosowania oświetlenia do specyfiki sytuacji. Na przykład w przypadku badania cienkiego przezroczystego preparatu w jasnym polu wysoka jasność będzie nadmierna, ale podczas przesyłania gęstego ciemnego obiektu nie można się bez niego obejść.

- Oświetlenie według Według metody Koehlera. Obecność oświetlenia w mikroskopie według systemu Według metody Koehlera. Oświetlenie to jest używane wyłącznie w modelach biologicznych (patrz „Typ”) i jest oznaką urządzenia klasy profesjonalnej. System Keller komplikuje i podnosi koszt projektu, dodatkowo może wymagać specyficznej regulacji, jednak przy odpowiednim ustawieniu jakość oświetlenia jest bardzo wysoka, a obraz jak najbardziej wiarygodny. Należy pamiętać, że mikroskopy zawierają tzw. „Uproszczony system Keller”, gdy ustawienia są ustawione fabrycznie i nie można ich zmienić; jednak w tym przypadku mamy na myśli pełnoprawne, regulowane oświetlenie Keller.
<...br> - Nagrywanie zdjęć / wideo. Możliwość rejestracji zdjęć i wideo obrazu widocznego przez mikroskop. Cechy realizacji tej funkcji w różnych mikroskopach mogą być różne. Na przykład niektóre modele muszą być podłączone do komputera, podczas gdy inne mogą nagrywać materiały bezpośrednio na kartę pamięci lub inny nośnik. Ponadto same kamery, wykonujące zdjęcia, mogą być wbudowane lub wymienne (patrz „Pakiet” / odpowiednie elementy).

Interfejs

Sposoby przesyłania danych do innych urządzeń przewidziane w konstrukcji mikroskopu.

Parametr ten dotyczy przede wszystkim modeli cyfrowych i optyczno-cyfrowych, a także pojedynczych urządzeń optycznych wyposażonych w kamery. Wszystkie opisane mikroskopy mogą być wyposażone w wyjścia AV i HDMI, uniwersalne porty USB , czytniki kart na nośniki wymienne, a także bezprzewodowe moduły Wi-Fi. Oto szczegółowy opis każdego interfejsu:

- Wyjście AV. Wyjście analogowe do transmisji sygnału wideo. Służy przede wszystkim do transmisji na żywo obrazu z kamery mikroskopowej, a w niektórych modelach także do przeglądania materiału zapisanego w pamięci. Takie wyjścia nie obsługują rozdzielczości HD i ogólnie są gorsze od HDMI pod względem ogólnej jakości „obrazu” (z tymi samymi cechami aparatu). Z drugiej strony, szczególnie dla mikroskopów, momenty te nie są tak często krytyczne; złącza analogowe są nadal dość popularne zarówno w ogólnym sprzęcie wideo, jak i w sprzęcie specjalnym; a implementacja tego interfejsu jest niedroga. Dlatego wyjścia AV można znaleźć nawet w dość zaawansowanych modelach.

- HDMI. Wyjście cyfrowe do transmisji sygnału wideo. Podobnie jak AV, może służyć zarówno do nadawania w czasie rzeczywistym, jak i do wykorzystania mikroskopu jako odtwarzacza wideo podczas pr...zeglądania zapisanych materiałów (o ile w tym modelu w ogóle jest taka możliwość). Jednocześnie takie wyjścia są bardziej zaawansowane niż analogowe AV: przez HDMI można przesyłać obrazy w jakości HD (w tym Full HD i wyższe), a sygnał jest bardzo odporny na zakłócenia. Przypominamy również, że ten interfejs jest niezwykle powszechny w nowoczesnym sprzęcie wideo - w szczególności obecność co najmniej jednego wejścia HDMI jest prawie obowiązkowa w przypadku telewizorów i monitorów obsługujących standardy HD. Z drugiej strony implementacja HDMI jest znacznie droższa i sensowne jest stosowanie jej z dość zaawansowanymi aparatami, co samo w sobie znacząco wpływa na cenę mikroskopów. Dlatego takie wyjścia można znaleźć głównie w dość drogich i zaawansowanych urządzeniach.

- USB. Uniwersalna wtyczka pozwalająca na różne zastosowania; określony zestaw tych opcji jest bezpośrednio związany z funkcjonalnością mikroskopu. Typowe przykłady użycia USB to: kopiowanie przechwyconych zdjęć i filmów na komputer lub laptop; nadawanie obrazów w czasie rzeczywistym; zdalne sterowanie za pomocą komputera PC/laptopa (np. przesuwanie nośnika leku); ładowanie wbudowanego akumulatora itp. Specyficzny typ złącza USB w mikroskopie może się różnić, jednak w zestawie zazwyczaj znajduje się odpowiedni kabel do podłączenia do standardowego pełnowymiarowego portu.

- Czytnik kart. Urządzeniem do pracy z kartami pamięci jest najczęściej SD, a w miniaturowych modelach kieszonkowych microSD. Karty te zwykle rejestrują materiał zarejestrowany przez kamerę. Ogólnie rzecz biorąc, funkcja ta znacznie ułatwia kopiowanie informacji na inne urządzenia, które również posiadają czytniki kart – przede wszystkim laptopy i komputery PC; a miniaturowe karty microSD są również obsługiwane przez smartfony, tablety i inne przenośne gadżety. W każdym razie wyjęcie karty z mikroskopu i zainstalowanie jej w innym urządzeniu jest często łatwiejsze i szybsze niż majstrowanie przy połączeniu przewodowym lub Wi-Fi.

- Wi-Fi. Moduł bezprzewodowy, który w tym przypadku służy głównie do komunikacji z zewnętrznym urządzeniem takim jak smartfon, laptop czy PC. Połączenie Wi-Fi pozwala przynajmniej na nadawanie obrazu z kamery i kopiowanie zrobionych przez nią zdjęć, a często także sterowanie innymi funkcjami i ustawieniami (jasność oświetlenia, ruch sterownika narkotykowego itp.). Jednocześnie brak przewodów zapewnia dodatkową swobodę ruchów i ogólną wygodę. Należy jednak mieć na uwadze, że konkretna forma komunikacji może być inna, należy to określić osobno. Tak więc niektóre modele obsługują bezpośrednie połączenie tylko na stosunkowo niewielką odległość (w praktyce do kilkudziesięciu metrów, a nawet mniej). Inni są w stanie połączyć się z urządzeniem zewnętrznym przez Internet, a tutaj odległość nie ma znaczenia – byłby dostęp do sieci World Wide Web. Jeszcze inne dopuszczają oba formaty pracy. Należy również zauważyć, że poszczególne urządzenia z taką funkcją w ogóle nie mają własnych ekranów i są przeznaczone do użytku z zewnętrznymi gadżetami; Taka konstrukcja sprawia, że mikroskop jest tak kompaktowy i łatwy do przenoszenia, jak to tylko możliwe.

Zasilanie

Sposoby zasilania, przewidziane w mikroskopie. Nawet modele optyczne mogą wymagać źródła zasilania do pracy podświetlenia (patrz wyżej), w przypadku innych odmian zasilanie jest prawie koniecznością. Niektóre modele mogą obsługiwać kilka typów zasilania.

- Sieć 230 V. Podłączenie do zwykłego gniazda 230 V. Całkiem wygodny i praktyczny wariant, słabo nadaje się do modeli przenośnych (patrz wyżej).

- Port USB. Zasilanie ze złącza USB jest często spotykane w mikroskopach cyfrowych (patrz „Zasada działania”): urządzenie jest zasilane z tego samego złącza, przez które jest podłączone do komputera lub innego ekranu zewnętrznego. A w modelach optycznych takie zasilanie może być przewidziane jako dodatek do opisanej powyżej sieci 230 V. Zwróć uwagę, że porty USB spotykane są między innymi w laptopach i innych urządzeniach przenośnych, co umożliwia korzystanie z takich mikroskopów nawet wtedy, gdy w pobliżu nie ma gniazdek. Jest to szczególnie przydatne w przypadku urządzeń przenośnych (patrz wyżej).

- Akumulator. Zasilanie z własnego wbudowanego akumulatora, w niektórych przypadkach niewymiennego. Ten wariant sprawia, że mikroskop staje się całkowicie autonomiczny i umożliwia korzystanie z niego nawet przy całkowitym braku zewnętrznych źródeł zasilania w pobliżu. Z drugiej strony ten szczegół dotyczy głównie modeli przenośnych, i to tylko w niektórych przypadkach, a wbudowana bateria odczuwalnie wpływa na wagę, wymiary oraz cenę urządzenia. Dlatego...mikroskopy czysto bezprzewodowe są niezwykle rzadkie, częściej ten sposób zasilania przewiduje się w postaci dodatku do sieci 230 V lub USB (patrz wyżej) - jako zapasowy w przypadku problemów z zasilaniem zewnętrznym.

- Baterie. Kolejna odmiana autonomicznego zasilania, podobna do opisanych powyżej baterii. Jeżeli chodzi o oszczędzanie, obecność komory baterii zyskuje przewagę nad wbudowanym akumulatorem, jednak same baterie należy dokupić osobno - przy czym przyjdzie albo regularnie kupować jednorazowe ogniwa, albo wydać dość dużą kwotę za akumulatory i ładowarkę do nich. Ponadto jakość baterii w dużym stopniu zależy od konkretnej marki i nie wszystkie ogniwa mogą normalnie „uruchomić” mikroskop i zapewnić akceptowalny czas jego pracy. Dlatego takie zasilanie, podobnie jak akumulatorowe, w czystej postaci jest rzadko spotykane, częściej uzupełnia ono podłączenie do sieci 230 V lub USB.

Zawartość zestawu

Dodatkowe wyposażenie, dostarczane z mikroskopem.

— Kamera. W danym przypadku chodzi o zdejmowaną kamerę montowaną albo na podstawowym kanale optycznym (aby wykorzystać ekran zewnętrzny jako okular), albo na trzecim dodatkowym kanale trinokularu (patrz „Okular”). Ponadto istnieją również wbudowane kamery (patrz odpowiedni punkt). Niektóre modele, dostarczane bez kamery, pozwalają na dokupienie jej osobno, lecz dany wariant wyposażenia jest ogólnie wygodniejszy.

Adapter do smartfona. Przyrząd pozwalający na zainstalowanie smartfona na mikroskopie, dzięki czemu kamera aparatu „widzi” obraz w okularze. W ten sposób możesz wykonywać zdjęcia i nagrywać wideo swoim smartfonem, a także wykorzystać jego ekran jako okular - na przykład, jeśli chcesz pokazać obraz kilku osobom na raz.

— Zestaw akcesoriów i preparatów. Zestaw akcesoriów do pracy z mikroskopem. Taki zestaw zawiera zwykle co najmniej szkiełka preparatowe i nakrywkowe; oprócz nich do zestawu mogą być dołączone narzędzia preparacyjne, różne mieszanki pomocnicze (żywica do klejenia, olejki i płyny do obiektywów immersyjnych), a także gotowe preparaty do badania możliwości mikroskopu i wstępnego szkolenia w zakresie pracy z nim.

Soczewka Barlowa. Dodatkowa soczewka, która jest montowana przed okularem i zmienia ogólną krotność powiększenia - zwykle w kierunku podwyższenia, a...le może być też odwrotnie. Aby obliczyć całkowity stopień powiększenia przy użyciu takiej optyki, należy pomnożyć początkowe powiększenie przyrządu przez powiększenie soczewki: na przykład mikroskop 200x z soczewką Barlowa 1,6x da powiększenie 200*1,6 = 320x. Częściowo dlatego soczewki Barlowa mają bardzo małą krotność - nawet ona zapewnia znaczny wzrost powiększenia. Drugim powodem jest to, że sensowne jest podwyższenie ogólnego powiększenia tylko do pewnego limitu - powyżej tego limitu optyka tylko rozciągnie obraz bez zwiększania szczegółów. Właściwie właśnie to dzieje się w wielu mikroskopach, gdy ustawisz przyrząd na maksymalne powiększenie i zainstalujesz soczewkę Barlowa. Dlatego dany przyrząd powinien być traktowany bardziej jako narzędzie do regulacji powiększenia przy średnich krotnościach, a nie jako sposób na zwiększenie maksymalnej krotności.

Pokrowiec/walizka. Walizka do przechowywania i transportu mikroskopu. Pokrowce nazywane są miękkimi futerałami, są one przeznaczone głównie do ochrony przed zanieczyszczeniami; walizki wykonywane są z twardych materiałów, są bardziej masywne, lecz są w stanie ochronić urządzenie przed uderzeniami i wstrząsami.
Filtry
Cena
oddo zł
Marki
Przeznaczenie
Rodzaj
Okular
Maks. powiększenie
Cechy konstrukcji
Funkcje i możliwości
Interfejs
Głowica rewolwerowa
Powiększenie obiektywu
Powiększenie okularu
Wyczyść parametry