Przyrząd
-
Woltomierz. Napięcie elektryczne jest mierzone odpowiednio w woltach, urządzenia tego typu są przeznaczone przede wszystkim do pomiaru napięcia, a najczęściej - tylko do tego i do niczego innego. Jednak poza napięciem w praktyce często trzeba zmierzyć się z wieloma innymi parametrami, a nowoczesne technologie umożliwiają tworzenie kompaktowych, funkcjonalnych i jednocześnie niedrogich urządzeń uniwersalnych. Dlatego czyste woltomierze są spotykane i używane stosunkowo rzadko, a większość użytkowników elektrycznych woli używać multimetrów (patrz poniżej).
-
Multimetr. Urządzenia tego typu nazywane są też potocznie „testerami”. Multimetr to wielofunkcyjne urządzenie pomiarowe, które łączy w sobie funkcje co najmniej woltomierza, amperomierza i omomierza - czyli jest zdolne do pomiaru napięcia, prądu i rezystancji. Dodatkowo mogą być zapewnione inne funkcje - na przykład pomiar pojemności, indukcyjności, temperatury (patrz "Funkcje"). Do pomiarów zwykle używa się pary sond. Ze względu na swoją wszechstronność w połączeniu ze stosunkowo niskim kosztem, multimetry są najpopularniejszym rodzajem przyrządów pomiarowych, mogą być wykorzystywane zarówno do prostych zadań, takich jak sprawdzanie elementów radiowych czy domowych sieci, jak i do pracy ze złożonymi obwodami.
-
Miernik cęgowy. Początkowo takie cęgi to specyficzne urządzenia, które pozwalają mierzyć na
...tężenie prądu w sposób bezkontaktowy, bez dotykania przewodów i ingerowania w działanie obwodu. Działają one w następujący sposób: szczypce zakrywają drut i ze względu na charakterystykę otaczającego go pola magnetycznego mierzą natężenie prądu. W ten sposób można mierzyć zarówno prądy AC, jak i DC (chociaż konkretne możliwości mogą oczywiście różnić się w zależności od modelu). Oprócz pomiarów bez przerywania obwodu zaletą cęgów jest możliwość pracy z dużymi prądami i napięciami - setki amperów w sieciach setek woltów; a same pomiary są bezpieczniejsze niż przy zwykłej metodzie kontaktowej. Z drugiej strony dokładność pomiaru jest stosunkowo niska – zwykle nie wyższa niż klasa 2,5. Ponadto wiarygodność wyniku silnie zależy od prawidłowego położenia cęgów, a przy prądzie zmiennym - także od równomierności sinusoidy (jednak w zaawansowanych modelach mogą być przewidziane specjalne obwody kompensujące tę zależność). Ponadto pomiar bezkontaktowy nie zawsze ma zastosowanie wyłącznie w praktyce. Zaciski mogą być wykonane w postaci specjalistycznego urządzenia, jednak najczęściej urządzenia tego typu wykonane są w postaci multimetrów, uzupełnione o obwód magnetyczny do pomiarów bezstykowych i mogą również pracować zwykłą metodą stykową.
- Oscyloskop. Oscyloskopy to przyrządy przeznaczone do obserwacji, pomiaru i rejestracji parametrów sygnału elektrycznego. Charakterystyczną cechą klasycznego oscyloskopu jest ekran, na którym urządzenie buduje wykres sygnału dostarczanego na wejście. Możliwa jest jednoczesna praca z kilkoma sygnałami (więcej szczegółów patrz "Liczba kanałów"). Jednak niektóre modele nie mają własnego wyświetlacza i są podłączone do komputera w celu wykonania pomiarów (patrz „Oscyloskop USB”). Wiele parametrów sygnału można określić już za pomocą jego wykresu - ten wykres jest zwykle uzupełniany skalą współrzędnych, która wyraźnie ilustruje częstotliwość, amplitudę itp.; jednak oscyloskop może również wyprowadzać niektóre parametry, takie jak kąt fazowy, jako określone dane liczbowe. Nowoczesne oscyloskopy mogą pracować na częstotliwościach do gigaherców włącznie i najczęściej wykorzystują obwody cyfrowe (patrz „Typ”), dzięki czemu przewyższają klasyczne instrumenty analogowe pod względem dokładności.
- skopomierz. Uniwersalne urządzenia, które łączą w jednym przypadku zarówno multimetr, jak i oscyloskop. Oba te typy są opisane bardziej szczegółowo powyżej; tutaj zauważamy, że takie połączenie zapewnia bardzo rozbudowaną funkcjonalność, jednak skopmetry nie są tanie, a ich dokładność pomiaru jest niższa niż w przypadku specjalistycznych multimetrów i/lub oscyloskopów.Wykonywane pomiary
Parametry, które mogą być mierzone przez urządzenie.
-
Napięcie. Napięcie (różnica potencjałów między dwoma punktami w obwodzie), mierzone w woltach. Jeden z podstawowych parametrów elektrycznych, obsługiwany przez wszystkie typy przyrządów, z wyjątkiem oscyloskopów (patrz „Urządzenie”). Do pomiaru wykorzystywane jest połączenie równoległe. W urządzeniach analogowych (patrz „Rodzaj”) pomiar napięcia można przeprowadzić bez zasilania.
-
Aktualny. Siła prądu przepływającego przez określony odcinek obwodu; mierzone w amperach. Istnieją dwa sposoby pomiaru aktualnej siły: tradycyjny i bezkontaktowy. Pierwszy jest dostępny w prawie wszystkich urządzeniach z funkcją amperomierza, w tym celu konieczne jest otwarcie obwodu i szeregowe przekształcenie urządzenia w szczelinę (ponadto przy analogowej zasadzie działania amperomierz nie potrzebuje zasilania). Druga metoda stosowana jest w cęgach prądowych (patrz "Urządzenie").W większości przypadków modele są w stanie mierzyć
prąd stały i
przemienny.
-
Opór. Odporność określonego elementu na stały prąd elektryczny; mierzone w omach. Należy zauważyć, że w tym przypadku mówimy o tradycyjnych pomiarach, które nie wiążą się z ultrawysokimi rezystancjami charakterystycznymi dla izolacji (w izolacji parametr ten sp
...rawdzany jest odrębną metodą, więcej szczegółów poniżej). Pomiary rezystancji wykonuje się w następujący sposób: na sondy urządzenia przykładane jest określone napięcie (niskie, w granicach kilku woltów), po czym są one podawane na miejsce pomiaru - oraz rezystancja badanego odcinka obwodu lub inne obiekt jest obliczany na podstawie prądu płynącego przez utworzony obwód. Dlatego do pracy w trybie omomierza wymagane jest zasilanie - nawet dla instrumentu analogowego.
- Pojemność. Pojemność kondensatora mierzy się w faradach (częściej mikrofaradach i innych jednostkach pochodnych). Sam pomiar odbywa się poprzez doprowadzenie do kondensatora prądu przemiennego. Funkcja ta może być przydatna zarówno do wyjaśnienia pojemności kondensatorów bez oznaczenia (początkowo nieoznaczonych lub z wymazanymi napisami), jak i do sprawdzenia jakości podpisanych części. Na kondensatorach oprócz pojemności nominalnej można wskazać maksymalne odchylenie od nominalnej; jeśli wyniki pomiarów wykraczają poza dopuszczalne odchylenie, lepiej nie używać części. Jeśli odchylenie nie jest wskazane, można założyć, że nie powinno ono przekraczać 10% wartości nominalnej. Na przykład dla części 0,5 μF zakres dopuszczalnych pojemności wyniesie 0,45 - 0,55 μF.
- Temperatura. Pomiar temperatury - zwykle zewnętrznym czujnikiem zdalnym, najczęściej na bagnecie. W elektrotechnice funkcja ta służy do sterowania trybem pracy części wrażliwych na przegrzanie lub które muszą działać w określonym trybie temperaturowym.
- Częstotliwość. Możliwość pomiaru częstotliwości sygnału elektrycznego jest typowa przede wszystkim dla oscyloskopów i skopmetrów, ale można ją również spotkać w innych typach przyrządów - tych samych multimetrach (patrz "Urządzenie"). Z reguły oznacza to możliwość wyświetlania określonych liczb odpowiadających częstotliwości w hercach.
- Cła. Jedną z podstawowych cech jednorodnego sygnału impulsowego jest współczynnik wypełnienia, a mianowicie stosunek jego okresu powtarzania do czasu trwania pojedynczego impulsu. Na przykład, jeśli po każdym impulsie 2 ms następuje przerwa 6 ms, to okres powtarzania sygnału będzie wynosił T = 6 + 2 = 8 ms, a współczynnik wypełnienia wyniesie S = 8/2 = 4. Nie należy mylić cykl pracy z cyklem pracy: Chociaż te możliwości opisują jedną właściwość sygnału, robią to na różne sposoby. Współczynnik wypełnienia jest odwrotnością współczynnika wypełnienia, czyli stosunku długości impulsu do okresu powtarzania (w naszym przykładzie będzie to 2/8 = 25%). Termin ten występuje głównie w źródłach angielskich i tłumaczonych, natomiast w elektrotechnice domowej przyjmuje się termin „cykl pracy”.
- Indukcyjność. Indukcyjność jest głównym parametrem roboczym każdej cewki indukcyjnej. Możliwość zmierzenia tego parametru jest ważna w świetle faktu, że specjaliści i radioamatorzy często samodzielnie wykonują cewki, a określenie charakterystyki części bez specjalnego urządzenia jest niezwykle trudne, jeśli nie niemożliwe. Zasada pomiaru indukcyjności jest podobna do określania pojemności kondensatora (patrz wyżej) - przepuszczania prądu przemiennego przez cewkę i śledzenia jego „odpowiedzi”. Jednak funkcja ta jest znacznie mniej powszechna niż pomiar pojemności.
- Rezystancja izolacji. Rezystancja izolacji przewodów elektrycznych na prąd przemienny. Izolacja z definicji ma wyjątkowo dużą rezystancję, więc tradycyjna metoda pomiaru rezystancji (przy niskim napięciu roboczym, patrz wyżej) nie ma tu zastosowania – prądy byłyby zbyt słabe i niemożliwe byłoby ich dokładne zmierzenie. Dlatego do sprawdzania materiałów izolacyjnych i innych dielektryków nie stosuje się omomierzy, ale specjalnych urządzeń - megaomomierzy (lub multimetrów obsługujących ten tryb). Charakterystyczną cechą megaomomierza jest wysokie napięcie robocze - setki, a nawet tysiące woltów. Na przykład do badania izolacji napięciem roboczym 500 V wymagane jest to samo napięcie megaomomierza, dla materiału 3000 V - urządzenie 1000 V itp., bardziej szczegółowo wymagania dla różnych rodzajów izolacji opisano w źródła specjalne. Aby osiągnąć to napięcie, może być wymagany zewnętrzny moduł wysokonapięciowy, ale wiele multimetrów obsługujących ten rodzaj pomiaru jest w stanie samodzielnie generować krótkotrwałe impulsy wysokiego napięcia z niskonapięciowych źródeł zasilania, takich jak baterie AA lub Krona (patrz " Typ Akumulatora"). Należy pamiętać, że podczas pracy z megaomomierzem należy szczególnie uważnie przestrzegać zasad bezpieczeństwa - ze względu na wysokie napięcie robocze.
- Moc. Moc prądu elektrycznego określają dwa podstawowe parametry - siła prądu i napięcie; z grubsza mówiąc, wolty należy pomnożyć przez ampery, wynikiem będzie moc w watach. Tak więc teoretycznie parametr ten można wyjaśniać bez specjalnej funkcji pomiaru mocy - wystarczy wyjaśniać napięcie i prąd. Jednak niektóre przyrządy pomiarowe mają specjalny tryb, który pozwala natychmiast zmierzyć zarówno podstawowe parametry, jak i automatycznie na ich podstawie obliczyć moc - jest to wygodniejsze i szybsze niż wykonywanie obliczeń osobno. Wiele z tych urządzeń to cęgi (patrz „Urządzenie”) i pomiar prądu przy wyznaczaniu mocy odbywa się w sposób bezkontaktowy, a napięcie mierzone jest klasyczną metodą stykową. Istnieją inne opcje projektowe - na przykład adapter do gniazdka: urządzenie elektryczne jest podłączone do gniazdka przez taki adapter, a multimetr pobiera dane dotyczące prądu i napięcia z adaptera. Przypominamy również, że moc czynna (użyteczna) prądu przemiennego nie zawsze jest równa pełnej – przy obciążeniu pojemnościowym i/lub indukcyjnym część mocy (moc bierna) jest „zużywana” przez kondensatory/cewki. Możesz przeczytać więcej o tych parametrach w dedykowanych źródłach, ale tutaj zauważamy, że różne modele multimetrów mogą mieć różne możliwości pomiaru różnych rodzajów mocy; te punkty nie zaszkodzą wyjaśnić przed zakupem z góry.
- Kąt fazowy. Pomiar stopnia przesunięcia fazowego dwóch sygnałów elektrycznych (lub parametrów sygnału). Specyficzne rodzaje i możliwości takich pomiarów są różne, najbardziej popularne są dwie opcje. Pierwszym z nich jest pomiar różnicy między fazami zasilania trójfazowego, przede wszystkim w celu oceny jego ogólnej jakości. Drugi to oszacowanie przesunięcia fazowego między prądem a napięciem, które występuje, gdy obciążenie reaktywne (pojemnościowe lub indukcyjne) jest przyłożone do źródła prądu przemiennego; stosunek mocy czynnej do mocy pozornej (współczynnik mocy, „cos phi”) bezpośrednio zależy od tego przesunięcia.
- Częstotliwość rotacji. W tym przypadku najczęściej mówimy o możliwości pomiaru prędkości obrotowej silnika spalinowego. W związku z tym takie modele są zwykle określane jako specjalistyczne multimetry samochodowe. Przeznaczone są głównie do diagnostyki i testowania silników nie posiadających elektronicznych układów zapłonowych. Do pomiaru z reguły należy dopasować multimetr do liczby cylindrów silnika i podłączyć go do układu zapłonowego (konkretna metoda podłączenia musi być określona w dokumentacji samochodu).
Zauważ, że nie wszystkie są wymienione na tej liście, ale tylko najpopularniejsze pomiary znalezione we współczesnych multimetrach i innych urządzeniach o podobnym przeznaczeniu. Oprócz nich projekt może przewidywać bardziej specyficzne funkcje - więcej szczegółów w rozdziale „Inne pomiary”.Rodzaj prądu
Rodzaj prądu, który urządzenie ma mierzyć. W tym przypadku nie chodzi o wszystkie tryby pomiaru, a jedynie o określenie natężenia prądu, czyli pracę w trybie amperomierza.
- Stały. Prąd, który ma ściśle określoną biegunowość i stale płynie w jednym kierunku, od minusa do plusa. Prąd ten występuje głównie w obwodach elektronicznych za zasilaczami, w elektronice kompaktowej zasilanej bateriami, a także w sieciach pokładowych samochodów. Jednak podczas prac elektrycznych w domowych i przemysłowych sieciach prądu przemiennego stosunkowo rzadko mierzy się natężenie prądu; dlatego wśród takich urządzeń często znajdują się modele, które są kompatybilne z sieciami „zmiennego” napięcia (patrz poniżej), ale nie są kompatybilne z prądem. Ogólnie na rynku jest mniej urządzeń na prąd stały niż połączonych (patrz poniżej).
- Zmienna. Prąd zmieniający kierunek ruchu kilkadziesiąt razy na sekundę (np. w domowych sieciach 230 V standardowa częstotliwość to 50 lub 60 Hz w zależności od regionu). Taki prąd jest standardem dla sieci domowych i przemysłowych: jest wygodny, ponieważ nie wymaga polaryzacji przy podłączaniu odbiorców końcowych, a także zapewnia pewne możliwości niedostępne dla prądu stałego (w szczególności tylko przy takim zasilaniu to można zastosować transformatory). Jednak stosunkowo niewiele urządzeń jest produkowanych wyłącznie dla prądu przemiennego, bardziej powszechne są opcje łączone (patrz poniżej).
- Stała / zmienna. Ta kategoria obejmuje mo...dele, które mogą mierzyć zarówno prądy DC, jak i AC. Możliwości obu wariantów zostały opisane powyżej, a ich obsługa w jednym urządzeniu sprawia, że jest ona uniwersalna i umożliwia jej stosowanie w dowolnym typie sieci i obwodów - najważniejsze jest to, że przestrzegane są ograniczenia prądowe (patrz poniżej).
Napięcie DC max.
Najwyższe napięcie DC (patrz Typ napięcia), które można skutecznie zmierzyć za pomocą tego urządzenia.
Zgodność z tym parametrem jest ważna nie tylko dla prawidłowych pomiarów, ale także z punktu widzenia bezpieczeństwa. Pomiar zbyt wysokiego napięcia może prowadzić do wadliwego działania urządzenia, począwszy od działania zabezpieczenia awaryjnego (może to być bezpiecznik jednorazowy, który po pracy należy wymienić) a skończywszy na całkowitej awarii i nawet ogień. Dlatego w żadnym wypadku nie należy przekraczać tego wskaźnika. I warto wybrać urządzenie na maksymalne napięcie z pewnym marginesem - co najmniej 10 - 15%: da to dodatkową gwarancję w sytuacjach awaryjnych. Z drugiej strony margines nie powinien być zbyt duży: wysoki stały próg napięcia może pogorszyć dokładność pomiarów przy niskim napięciu, a także wpłynąć na cenę, wymiary i wagę urządzenia.
Zauważ, że większość multimetrów i innych podobnych urządzeń ma kilka zakresów pomiarowych, z różnymi maksymalnymi progami. Oznacza to, że dla bezpiecznego pomiaru napięcia bliskiego maksimum należy w ustawieniach ustawić odpowiedni tryb.
Dokładność pomiaru (V⁻)
Dokładność pomiaru zapewniana przez przyrząd.
Zwyczajowo dokładność pomiaru multimetrów wskazuje się najmniejszym błędem (w procentach), jaki urządzenie jest w stanie zapewnić podczas pomiaru prądu stałego. Im mniejsza liczba w tym punkcie, tym odpowiednio wyższa dokładność. Jednocześnie podkreślamy, że jest to najmniejszy błąd (najwyższa dokładność), który zazwyczaj osiągany jest tylko w pewnym zakresie pomiarowym; w innych zakresach dokładność może być niższa. Np. jeżeli w zakresie „1 – 10 V” urządzenie podaje maksymalne odchylenie 0,5%, a w zakresie „10 – 50 V” – 1%, to w charakterystyce będzie wskazane 0,5%. Niemniej jednak, zgodnie z tym wskaźnikiem, całkiem możliwe jest ocenianie i porównywanie nowoczesnych multimetrów. Czyli urządzenie z mniejszym deklarowanym błędem z reguły i generalnie będzie dokładniejsze niż model o podobnych osiągach z większym błędem.
Dane dotyczące dokładności pomiarów w innych zakresach i trybach można podać w szczegółowej charakterystyce urządzenia. Jednak w praktyce ta informacja nie jest wymagana tak często - tylko w przypadku niektórych konkretnych zadań, w których zasadniczo konieczne jest poznanie możliwego błędu.
Napięcie AC max.
Najwyższe napięcie AC (patrz Typ napięcia), które można skutecznie zmierzyć za pomocą tego modelu. Parametr ten jest ważny nie tylko dla samych pomiarów, ale także dla bezpiecznej obsługi urządzenia: zmierzenie zbyt wysokiego napięcia w najlepszym wypadku uruchomi zabezpieczenie awaryjne (a możliwe, że po tym będzie trzeba poszukać nowego bezpiecznik do wymiany spalonego), w najgorszym przypadku - na awarię sprzętu, a nawet pożar. Ponadto dla bezpiecznych pomiarów niezwykle pożądany jest margines napięciowy – wynika to zarówno z charakterystyki prądu przemiennego, jak i z możliwości różnych nienormalnych sytuacji w sieci, przede wszystkim przepięć. Na przykład w przypadku sieci 230 V pożądane jest posiadanie urządzenia na co najmniej 250 V, a lepiej - na 300 - 310 V; szczegółowe zalecenia dotyczące innych przypadków można znaleźć w dedykowanych źródłach.
Zauważ, że większość multimetrów i innych podobnych urządzeń ma kilka zakresów pomiarowych, z różnymi maksymalnymi progami. Oznacza to, że dla bezpiecznego pomiaru napięcia bliskiego maksimum należy w ustawieniach ustawić odpowiedni tryb.
Prąd DC max.
Najwyższy prąd stały (patrz „Rodzaj prądu”), który urządzenie jest w stanie zmierzyć bez przeciążeń i związanych z nimi problemów (takich jak „przepalenie” bezpieczników lub nawet awaria).
Wybierając według tego parametru, warto pamiętać, że nawet przy stosunkowo niskich napięciach prądy mogą być dość wysokie, jeśli źródło zasilania zapewnia odpowiednią moc - na przykład akumulator samochodowy 12 V jest w stanie dostarczyć prądy o wartości setek amperów . W rzeczywistości kompatybilność z wysokimi prądami stałymi jest ważna przede wszystkim dla urządzeń samochodowych; to jednak nie koniec.
Dla bezpiecznego użytkowania pożądane jest, aby mieć pewien margines na maksymalny prąd. Nie zapominaj również, że przed wykonaniem pomiarów musisz ustawić odpowiednie ustawienia.
Prąd AC max.
Największy prąd przemienny (patrz „Rodzaj prądu”), który może być mierzony przez to urządzenie. W żadnym wypadku nie należy przekraczać tego parametru – w przeciwnym razie możliwe są różne awarie, od zadziałania zabezpieczenia awaryjnego urządzenia (z dalszą wymianą bezpieczników) po pożar.
Wybierając parametr ten warto pamiętać, że nawet przy stosunkowo niskich napięciach prądy mogą być dość wysokie, jeśli źródło zasilania zapewni odpowiednią moc. Dla bezpiecznego użytkowania pożądane jest, aby mieć pewien margines na maksymalny prąd. Nie zapominaj również, że przed wykonaniem pomiarów musisz ustawić odpowiednie ustawienia.
Rezystancja max.
Największy opór, jaki urządzenie może skutecznie zmierzyć.
Wybierając według tego wskaźnika należy przede wszystkim wziąć pod uwagę największe opory, które mają być mierzone. A jeśli mówimy o urządzeniu analogowym (patrz „Rodzaj”), musisz również pamiętać, że gdy zbliżasz się do maksymalnego oporu, dokładność pomiaru gwałtownie spada. Wynika to ze specyfiki pomiaru i kalibracji skali w takich urządzeniach: na przykład przy maksymalnej rezystancji 1 MΩ dokładność pomiaru w zakresie 0 - 2 kΩ może wynosić 0,2 kΩ, w zakresie 2 - 6 kΩ - 0,5 kΩ, w zakresie 6 - 10 kOm - już 1 kOm, a bliżej maksimum, wskaźnik ten może osiągnąć dziesiątki, a nawet setki kiloomów. Dlatego warto wybrać urządzenie analogowe tak, aby jego maksymalna rezystancja była co najmniej 10 razy wyższa od maksymalnych rezystancji, które planuje się zmierzyć - tylko pod tym warunkiem zapewniona jest mniej lub bardziej akceptowalna dokładność pomiaru.