Zasięg pracy (z odbiornikiem)
Najdłuższy zakres pomiarowy zapewniany przez niwelator laserowy lub dalmierz (patrz „Rodzaj”) w przypadku korzystania ze specjalnego odbiornika. Działanie takich odbiorników opiera się na zastosowaniu czułej fotokomórki, która umożliwia utrwalenie znaku z urządzenia nawet jeśli nie jest on już widoczny gołym okiem. Dzięki temu możliwe jest znaczne – kilkukrotne – rozszerzenie zasięgu urządzenia; funkcja ta może być również przydatna np. w jasnym świetle słonecznym.
Odbiornik może być dostarczony jako zestaw, ale najczęściej należy go dokupić osobno. Zazwyczaj jego wrażliwy obszar jest dość rozległy, a konstrukcja zapewnia specjalne wskaźniki (lampki, wyświetlacz itp.), które zaznaczają położenie znaku w tym obszarze - na przykład nad środkiem / poniżej środka / na poziomie. Dzięki temu można łatwo „złapać” znak i określić jego położenie z dokładnością do kilku milimetrów.
Kąt samopoziomowania
Maksymalne odchylenie od pozycji poziomej, które urządzenie jest w stanie skorygować „własnymi środkami”.
Samopoziomowanie samo w sobie znacznie ułatwia instalację i wstępną kalibrację niwelatorów (patrz "Typ"), które często (a dla modeli optycznych - obowiązkowe) muszą być ustawione poziomo, aby działały. Dzięki tej funkcji wystarczy zamontować urządzenie mniej więcej równomiernie (w wielu modelach przewidziano do tego specjalne urządzenia, np. okrągłe poziomnice) – a dostrajanie w płaszczyźnie podłużnej i poprzecznej zostanie przeprowadzone automatycznie. A granice samopoziomowania są zwykle wskazane dla obu płaszczyzn; im wyższy wskaźnik ten, tym łatwiej jest zainstalować urządzenie, tym mniej wymaga od początkowego umieszczenia. W niektórych modelach wskaźnik ten ta może osiągnąć 6 - 8 °.
Czas poziomowania
Przybliżony czas, jaki zajmuje mechanizmowi samopoziomowania doprowadzenie poziomu do idealnie wypoziomowanej pozycji.
Aby uzyskać więcej informacji na temat takiego mechanizmu, zobacz Limity poziomu własnego. A rzeczywisty czas jego wyrównania zależy bezpośrednio od rzeczywistego odchylenia urządzenia od poziomu. Dlatego w charakterystyce z reguły podany jest maksymalny czas osiowania - czyli dla sytuacji, gdy w pozycji wyjściowej urządzenie jest pochylone pod maksymalnym kątem w obu osiach, wzdłużnej i poprzecznej. Ponieważ poziomnice są dalekie od zainstalowania w tej pozycji, w praktyce prędkość doprowadzenia do poziomu jest często wyższa niż deklarowana. Niemniej jednak sensowne jest ocenianie różnych modeli dokładnie według liczb podanych w charakterystyce - pozwalają one oszacować maksymalny czas, który trzeba będzie poświęcić na wyrównanie po następnym ruchu urządzenia. Jeśli chodzi o określone wskaźniki, mogą one wynosić od 1,5 - 2 s do 30 s.
Teoretycznie im krótszy czas wyrównania, tym lepiej, zwłaszcza jeśli czeka nas duża liczba pracy z częstymi ruchami z miejsca na miejsce. Jednak w praktyce porównując różne modele warto wziąć pod uwagę inne punkty. Po pierwsze, powtarzamy, że tempo wyrównywania w dużym stopniu zależy od limitów wyrównywania; w końcu im większe kąty odchylenia, tym więcej czasu zajmuje mechanizmowi powrót do poziomu. Tak więc, aby bezpośrednio porównać ze sobą pod względem szybkości samopoziomowania, to głównie te urządzen...ia, w których dopuszczalne kąty odchylenia są takie same lub nieznacznie się różnią. Po drugie, przy wyborze warto wziąć pod uwagę specyfikę proponowanej pracy. Jeśli więc urządzenie ma być często używane na bardzo nierównych powierzchniach, to na przykład model z czasem poziomowania 20 s i limitem samopoziomowania 6° będzie rozsądniejszym wyborem niż urządzenie z czasem 5 s i granice 2 °, ponieważ w drugim przypadku początkowa (ręczna) instalacja urządzenia zajmie dużo czasu. A dla mniej więcej równych płaszczyzn poziomych wręcz przeciwnie, szybsze urządzenie może być najlepszą opcją.
Temperatura robocza
Zakres temperatur, w których gwarantowana jest praca urządzenia przez wystarczająco długi czas bez awarii, awarii i przekroczenia błędu pomiarowego określonego w charakterystyce. Należy mieć na uwadze, że mówimy przede wszystkim o temperaturze obudowy urządzenia, a to zależy nie tylko od temperatury otoczenia – np. narzędzie pozostawione na słońcu może się przegrzać nawet przy dość chłodnej pogodzie.
Generalnie warto zwrócić uwagę na parametr ten, gdy szukasz modelu do pracy na zewnątrz, w nieogrzewanych pomieszczeniach i innych miejscach o warunkach znacząco odbiegających od warunków pokojowych; w pierwszym przypadku warto również zadbać o ochronę przed kurzem i wilgocią (patrz „Klasa ochrony”). Z drugiej strony, nawet stosunkowo proste i „krótkowzroczne” niwelatory/dalmierze zazwyczaj dobrze znoszą ciepło i zimno.
Wyłącznik czasowy
Możliwość
automatycznego wyłączenia urządzenia po określonym czasie. Funkcja ta znajduje się w tych typach przyrządów pomiarowych, które wymagają zasilania do działania - przede wszystkim mówimy o dalmierzach laserowych, ale ta lista może również zawierać niwelatory (patrz "Typ"), zarówno laserowe, jak i optyczne z dodatkowymi modułami cyfrowymi . ... Głównym celem automatycznego wyłączania jest oszczędzanie energii: w końcu prawie wszystkie takie urządzenia mają autonomiczne źródła zasilania (patrz „Moc”), których ładunek nie jest nieskończony. Zapominając o wyłączeniu urządzenia, możesz napotkać nieprzyjemną sytuację: baterie są rozładowane, ale nie ma pod ręką nowych; automatyczne wyłączanie zapobiega takim sytuacjom i generalnie wydłuża czas pracy bez wymiany akumulatora lub ładowania akumulatora. Ponadto funkcja ta jest przydatna z punktu widzenia bezpieczeństwa: automatyczne wyłączenie lasera zmniejsza prawdopodobieństwo przypadkowego trafienia jego wiązki w oczy osoby znajdującej się w pobliżu (w tym zapominalskiego operatora).
W niektórych modelach automatyczne wyłączanie jest wyzwalane dla całej elektroniki, w innych można najpierw wyłączyć laser (jako najbardziej energochłonną i niebezpieczną część), a dopiero po pewnym czasie - wszystkie inne obwody elektroniczne .
Automatyczne wyłączanie
Czas, po którym urządzenie całkowicie się wyłączy, jeśli użytkownik nie wykona żadnej czynności.
Zobacz powyżej, aby uzyskać więcej informacji na temat automatycznego wyłączania; a jego czas jest dwojaki. Z jednej strony, jeśli ten czas jest krótki, to czas bezczynności urządzenia będzie minimalny, co pomaga oszczędzać energię. Z drugiej strony zbyt częste automatyczne wyłączanie (po którym następuje włączenie do pracy) jest również niepożądane - zwiększa zużycie komponentów i zmniejsza zasoby, a nie zawsze jest wygodne dla użytkownika. Dlatego producenci wybierają czas zachowując równowagę między tymi momentami, a także ogólną klasą i przeznaczeniem urządzenia. Tak więc w niektórych dalmierzach wskaźnik ten nie sięga nawet minuty, chociaż w większości takich urządzeń mieści się w zakresie od 3 do 8 minut; aw niektórych urządzeniach profesjonalnych (głównie poziomach) czas automatycznego wyłączenia może wynosić 30 minut lub więcej (do 3 godzin).
Dioda lasera
Długość fali promieniowania emitowanego przez diodę LED poziomu lub dalmierza; parametr ten określa przede wszystkim kolor wiązki laserowej. Najbardziej rozpowszechnione we współczesnych modelach są diody LED o długości fali około 635 nm - stosunkowo niskim kosztem zapewniają jaskrawoczerwone promieniowanie, co daje dobrą widzialną projekcję. Są też zielone lasery, zwykle o długości 532 nm – ślady po nich są jeszcze lepiej widoczne, ale takie diody są dość drogie i rzadko się je stosuje. A promieniowanie o długości fali dłuższej niż 780 nm należy do widma podczerwieni. Taki laser jest niewidoczny gołym okiem i słabo nadaje się do niwelacji, ale można go zastosować w dalmierzach - oczywiście, jeśli masz wizjer (więcej szczegółów w dziale "Typ").
Liczba płaszczyzn pionowych
Liczba rzutów pionowych wydawanych przez poziom lasera podczas pracy.
Większość nowoczesnych poziomów przeznaczona jest na ściśle określone stanowisko pracy; odpowiednio
rzut pionowy nazywany jest rzutem rysowanym od góry do dołu w stosunku do standardowego położenia urządzenia. Jeśli takich płaszczyzn jest kilka, poziom można wykorzystać na dwie, a nawet trzy ściany jednocześnie - przydaje się to np. do jednoczesnej pracy kilku osób. Jednocześnie istnieją urządzenia przenośne, które mogą być używane w różnych pozycjach; dla nich główna płaszczyzna robocza nazywana jest pionową, chociaż podczas pracy może być umieszczona zarówno poziomo, jak i pod kątem, w zależności od konkretnych zadań. Należy również pamiętać, że rzut pionowy może również generować linię poziomą - na przykład podczas instalowania poziomu na podłodze.
Należy pamiętać, że liczba rzutów jest obliczana nie przez płaszczyzny geometryczne, ale przez poszczególne elementy laserowe, z których każdy odpowiada za własny „obszar roboczy”. Na przykład, jeśli poziom ma dwa pionowe elementy znajdujące się na przeciwległych końcach i skierowane w różnych kierunkach, są one liczone jako dwa rzuty, nawet jeśli te rzuty leżą w tej samej płaszczyźnie.
Zasilanie
Typ i liczba ogniw zasilających, stosowanych w niwelatorze/dalmierzu. Wszystkie elementy o standardowych rozmiarach (
AA,
AAA,
C,
D,
9 V) produkowane są w dwóch wariantach - baterie jednorazowe i akumulatorki. Daje to użytkownikowi wybór: albo dokupywać za każdym razem stosunkowo niedrogie baterie, albo zainwestować jeden raz w baterię z ładowarką, a następnie po prostu ładować baterię w razie potrzeby.
Oryginalne baterie są z definicji przeznaczone do wielokrotnego ładowania, podobnie jak
akumulatory 18650.
Konkretne rodzaje zasilania dziś mogą wyglądać następująco:
— AA. Standardowe ogniwo, potocznie nazywane „paluszek”. Moc tych ogniw jest średnia, można je stosować zarówno w prostych urządzeniach, jak i dość zaawansowanych oraz „dalekiego zasięgu”. Takie zasilanie jest wygodne ze względu na to, że baterie AA są bardzo powszechne i sprzedawane prawie wszędzie - dzięki temu ich wyszukanie i wymiana zwykle nie stanowi problemu.
— AAA. Mniejsza wersja opisanego powyżej ogniwa AA - prawie identyczna w kształcie, jednak cieńsza i krótsza. Takie ogniwa, zwane „paluszkami mini” mają dość małą pojemność i moc, są jednak niezbędne w urządzeniach przenośnych, gdzie kompaktowość ma kluczowe znaczenie. Również są dość powszechn
...e.
- C. Cylindryczne ogniwo, w postaci charakterystycznej, dość grubej „beczułki” - przy długości 50 mm średnica wynosi 26 mm. Ze względu na większą pojemność i moc, niż u AA, lepiej nadaje się do zaawansowanych modeli z laserami „dalekiego zasięgu”, jednak jest rzadziej używane i ogólnie mniej powszechne.
- D. Największy i najbardziej pojemny typ standardowych baterii, spotykany we współczesnych niwelatorach i dalmierzach: grubość i średnica wynoszą odpowiednio 62 i 34 mm. Głównym obszarem zastosowania baterii D są wydajne urządzenia profesjonalne.
- Akumulator. W danym przypadku chodzi o zasilanie narzędzia z oryginalnej baterii, która nie jest zaliczana do żadnego standardowego rozmiaru. Ten wariant jest dobry, ponieważ kompletne baterie są początkowo tworzone dla konkretnego modelu niwelatora/dalmierza i są od razu dostarczane w zestawie (a w niektórych modelach są na ogół niewymienne); ponadto ich właściwości mogą znacznie przewyższać standardowe ogniwa o podobnym rozmiarze i wadze. Z drugiej strony takie zasilanie jest mniej wygodne przy wyczerpaniu baterii w niewłaściwym momencie: jedynym sposobem na naprawę sytuacji jest zwykle doładowanie, a zajmuje to dość dużo czasu (podczas gdy standardowe baterie można wymienić w zaledwie minutę ).
- 18650. Nazwa tych baterii pochodzi od ich wymiarów: 18,6x65,2 mm, cylindryczne, zewnętrznie przypominają nieco powiększone ogniwa AA, jednak mają napięcie robocze około 3,7 V i większą pojemność. Ponadto wszystkie ogniwa typu 18650 z definicji nie są bateriami jednorazowymi, lecz akumulatorami (typu litowo-jonowego).
— Bateria 9 V. 9-woltowe baterie o charakterystycznym prostokątnym kształcie, z parą styków na jednym z końców. Ze względu na wysokie napięcie robocze zapewniają dobrą moc i rzeczywistą pojemność, więc do działania zwykle wystarcza jedna taka bateria.
— LR44. Miniaturowe baterie typu pastylka o średnicy 11,6 mm i grubości 5,4 mm. Zwykle instalowane w zestawach po 3 sztuki i stosowane w kompaktowych niwelatorach laserowych małej mocy, dla których małe wymiary są ważniejsze niż moc i pojemność. Należy pamiętać, że oznaczenie LR44 odnosi się w szczególności do stosunkowo niedrogich baterii alkalicznych; droższe i bardziej zaawansowane srebrno-cynkowe źródła zasilania oznaczane są jako SR44 lub 357.
— 23A12V. Rzadka odmiana: baterie cylindryczne (długość 29 mm, średnica 10 mm) o napięciu nominalnym 12 V.