Polska
Katalog   /   Telefony i komunikacja   /   Telefony i akcesoria   /   Powerbank

Porównanie Hoco B27-15000 vs Asus ZenPower

Dodaj do porównania
Hoco B27-15000
Asus ZenPower
Hoco B27-15000Asus ZenPower
od 84 zł
Produkt jest niedostępny
od 60 zł
Produkt jest niedostępny
TOP sprzedawcy
Pojemność baterii w mAh15000 mAh10050 mAh
Pojemność rzeczywista9400 mAh6300 mAh
Typ bateriiLi-PolLi-Ion
Czas pełnego ładowania6 h
Ładowanie gadżetów (wyjścia)
USB A2 szt.1 szt.
Maks. moc (na 1 port)18 W
Ładowanie power banku
Wejścia do ładowania powerbanku
microUSB
microUSB
Prąd ładowania powerbanku przez USB
2 А /5V/
2 А /5V/
Funkcje i możliwości
Kable (adaptery) w zestawie
microUSB
microUSB
Funkcje
wyświetlacz informacyjny
lampa
 
 
Dane ogólne
Materiał obudowytworzywo sztucznealuminium
Wymiary90.5x59x22 mm
Waga215 g
Kolor obudowy
Data dodania do E-Katalogsierpień 2017październik 2015

Pojemność baterii w mAh

Im wyższa pojemność baterii, tym więcej energii powerbank jest w stanie zmagazynować i następnie przekazać przy ładowaniu do podłączonych do niego gadżetów. Należy jednak pamiętać, że nie cała zmagazynowana energia jest zużywana na ładowanie – część zużywana jest na funkcje serwisowe i nieuniknione podczas przesyłania straty. W związku z tym w specyfikacji często podawana jest rzeczywista pojemność powerbanku. Jeśli danych o rzeczywistej pojemności brak, przy obliczaniu należy przyjąć, że jest ona zwykle gdzieś 1,6 razy mniejsza od pojemności nominalnej. Na przykład dla modelu o pojemności nominalnej 10 000 mAh rzeczywista wartość wyniesie około 6300 mAh.

Jeśli chodzi o konkretne wartości pojemności nominalnej, to w najskromniejszych modelach wynosi ona 5000 - 7000 mAh, a nawet mniej; takie powerbanki mogą pełnić rolę zapasowego źródła energii na 1-2 ładowania smartfona z niezbyt pojemną baterią lub innym podobnym gadżetem. Największą popularnością dziś cieszą się modele o pojemności 10000 mAh - w wielu przypadkach to właśnie ten wariant zapewnia najlepszy stosunek ceny do pojemności. Warianty o pojemności 20000 mAh oraz 30000 mAh również są szeroko rozpowszechnione. Natomiast nawet pojemność 40000 mAh i więcej, dzięki rozwojowi ws...półczesnych technologii, spotykana jest dość często.

Pojemność rzeczywista

Rzeczywista pojemność powerbanku.

Rzeczywista pojemność to ilość energii, którą powerbank jest w stanie przekazać do ładowanych gadżetów. Wskaźnik ten jest nieuchronnie niższy niż pojemność nominalna (patrz wyżej) - najczęściej o około 1,6 razy (ze względu na fakt, że część energii jest przeznaczana na obsługę dodatkowych funkcji i strat przesyłowych). Jednak to właśnie według rzeczywistej pojemności najłatwiej jest ocenić rzeczywiste możliwości baterii zewnętrznej: na przykład, jeśli wskaźnik ten wynosi 6500 mAh - dany model wystarczy na dwa pełne naładowania smartfona o pojemności 3000 mAh i inteligentnego zegarka o pojemności 250 mAh.

Należy pamiętać, że pojemność w danym przypadku podawana jest dla 5 V - standardowego napięcia ładowania USB. Jednocześnie cechy charakterystyczne miliamperogodzin jako jednostki pojemności są takie, że rzeczywista ilość energii w baterii zależy nie tylko od liczby mAh, lecz także od napięcia roboczego. W praktyce oznacza to, że przy zastosowaniu technologii szybkiego ładowania (patrz niżej) zakładających podwyższone napięcie, wartość rzeczywistej pojemności będzie się różnić od deklarowanej (będzie niższa). Istnieją wzory i metody obliczania tej wartości, można je znaleźć w specjalnych źródłach.

Typ baterii

Typ baterii zainstalowanych w powerbanku. Obecnie najczęściej używane są baterie litowo-jonowe (Li-Ion) lub litowo-polimerowe (Li-Pol). Inne odmiany są mniej powszechne - rozwiązania oparte na bateriach niklowo-wodorkowych(Ni-Mh), a także na bateriach typu LiFePO4. Ponadto stosunkowo niedawno pojawił się dość obiecujące opracowanie - akumulatory grafenowe; jednak od początku 2021 r. dopiero zaczynają być one wprowadzane do produkcji masowej. Oto główne cechy każdej z tych odmian:

- Li-Ion. Technologia li-Ion umożliwia tworzenie dość dużych akumulatorów o niewielkich wymiarach i wadze. Dodatkowo takie ogniwa są wygodne w użytkowaniu (podstawowe parametry pracy regulowane są przez wbudowany sterownik), mają dużą szybkość ładowania i prawie nie podlegają „efektowi pamięci” (spadek pojemności przy ładowaniu niecałkowicie rozładowanego akumulatora). Główną wadą akumulatorów litowo-jonowych można nazwać dość wąski zakres dopuszczalnych temperatur otoczenia. Nie stanowi to problemu w warunkach „miejskich”, kiedy powerbank jest używany głównie w pomieszczeniach i noszony w kieszeni lub w torbie; lecz przy mniej sprzyjających warunkach (np. długie wędrówki w zimnych porach roku) warto wybierać modele z dobrą izolacją termiczną. Można również znaleźć informacje, że akumulatory litowo-jonowe są podatne na pożary, a nawet wybuchy; jest to jednak zwykle spowodowane awariami w...budowanych sterowników, które również są stale ulepszane, a obecnie ryzyko takich wypadków jest tak niskie, że można je właściwie zaniedbać.

- Li-Pol. Dalszy rozwój i ulepszanie wyżej opisanej technologii litowo-jonowej; główną różnicą jest zastosowanie stałego elektrolitu polimerowego zamiast ciekłego (stąd nazwa). Umożliwiło to osiągnięcie jeszcze większej wydajności bez zwiększania rozmiaru, a także zmniejszenie ryzyka pożarów i eksplozji w nietypowych warunkach pracy. Z drugiej strony akumulatory litowo-polimerowe są nieco droższe od akumulatorów litowo-jonowych i są jeszcze bardziej wrażliwe na zakłócenia temperatury.

- Ni-Mh. Akumulatory niklowo-wodorkowe wyróżniają się niezawodnością i szerokim zakresem dopuszczalnych temperatur, jednak przy tych samych wymiarach mają gorszą pojemność niż litowo-jonowe (a tym bardziej litowo-polimerowe), ponadto wymagają zgodności z określonymi zasadami eksploatacji. Warto również zauważyć, że technologia Ni-Mh doskonale sprawdza się w przypadku akumulatorów wymiennych. To właśnie w tym formacie najczęściej stosowane są takie akumulatory: powerbanki w formacie Ni-Mh to najczęściej adaptery z gniazdami na kilka ogniw wymiennych o standardowym rozmiarze (np. „paluszki” AA). W tym przypadku zestaw z reguły zawiera kilka odpowiednich akumulatorów wymiennych, jednak w razie potrzeby można je wymienić na inne ogniwa - mogą to być nawet baterie jednorazowe z pobliskiego sklepu. Taka możliwość może być bardzo przydatna, jeśli powerbank rozładował się w niefortunnym momencie, a przy tym nie ma sposobu, aby go naładować; dodatkowo zużyte baterie można wymienić na nowe bez konieczności wymiany całego urządzenia.

- LiFePO4. Kolejna zmodyfikowana wersja opisanych powyżej akumulatorów Li-Ion, tzw. „litowo-żelazowo-fosforanowych”. Zaletami takich ogniw w porównaniu z klasycznymi litowo-jonowymi są przede wszystkim stabilne napięcie rozładowania (aż do wyczerpania energii), wysoka moc szczytowa, długa żywotność, odporność na niskie temperatury, stabilność i bezpieczeństwo. Ponadto, dzięki zastosowaniu żelaza zamiast kobaltu, takie akumulatory są również bezpieczniejsze w produkcji i łatwiejsze w utylizacji. Jednocześnie pod względem pojemności są one zauważalnie gorsze i droższe od klasycznych litowo-jonowych, dlatego są używane dosyć rzadko.

- Grafenowy. Akumulatory na bazie grafenu - błonki węglowej o grubości jednego atomu. Sama bateria składa się z zestawu takich błonek, pomiędzy którymi ułożone są płyty krzemowe, a jako anodę stosuje się kobalt litu lub tlenek magnezu. Podobna konstrukcja oferuje szereg zalet w porównaniu z akumulatorami opisanymi powyżej. Po pierwsze, technologia grafenowa zapewnia wysoką gęstość energii, co umożliwia tworzenie lekkich i kompaktowych akumulatorów o dużej pojemności. Po drugie, do produkcji takich baterii potrzeba mniej rzadkich surowców niż w przypadku np. baterii litowych; a sama produkcja okazuje się bardziej przyjazna dla środowiska. Po trzecie, takie baterie nie są podatne na przegrzanie i wybuchy w przypadku przeciążenia lub uszkodzenia. Z drugiej strony, grafenowe ogniwa ładują się długo i nie są trwałe. Jednak technologia ta wciąż się rozwija i w przyszłości jest prawdopodobne, że te niedociągnięcia zostaną wyeliminowane – w całości lub przynajmniej częściowo.

Czas pełnego ładowania

Czas potrzebny do pełnego naładowania rozładowanego "do zera" akumulatora (oczywiście przy przestrzeganiu standardowej procedury). Cechy szczególne procesu ładowania w różnych modelach mogą być odpowiednio różne, a czas potrzebny na to może się znacznie różnić nawet przy tej samej pojemności.

Akumulatory „szybko ładowane” zazwyczaj kosztują więcej. Dlatego warto wybrać ten wariant, jeśli nie będziesz miał dużo czasu na uzupełnienie zapasu energii - na przykład podczas pieszych wycieczek, gdzie dostęp do stałego źródła energii jest utrudniony. Należy jednak pamiętać, że ładowanie z pełną prędkością może wymagać ładowarki obsługującej określoną technologię szybkiego ładowania (patrz poniżej).

Ponadto, że w większości nowoczesnych akumulatorach prędkość ładowania nie jest równomierna – jest maksymalna na samym początku, potem stopniowo spada. W związku z tym, czas potrzebny na uzupełnienie energii o określoną liczbę procent nie będzie ściśle proporcjonalny do całkowitego deklarowanego czasu ładowania; ponadto czas ten będzie zależał od tego, jak bardzo akumulator jest już naładowany w momencie rozpoczęcia procedury. Na przykład ładowanie od 0 do 50% zajmie mniej czasu niż od 50 do 100%, chociaż w obu przypadkach pozostaje połowa pojemności.

USB A

Całkowita liczba portów USB A do ładowania podłączonych gadżetów. Ten typ jest stopniowo zastępowany przez USB type C, jednak większość modeli nadal wykorzystuje USB A jako główne wyjście. Wskazuje na to również liczba odpowiednich portów. Klasyczne są 2 wyjścia USB A. Są jednak i kompaktowe modele z 1 wyjściem, i bardziej efektowne – do ładowania całego domu – z 3 i 4 USB A (nawet więcej).

Maks. moc (na 1 port)

Maksymalna moc, jaką powerbank w zasadzie jest w stanie dostarczyć do jednego ładowanego urządzenia. Zazwyczaj ta moc jest osiągana pod warunkiem, że żadne inne obciążenie niż to urządzenie nie jest podłączone do akumulatora (chociaż możliwe są wyjątki od tej reguły). A w przypadku obecności portów z różnymi prądami ładowania lub jeśli obsługiwanych jest wiele technologii szybkiego ładowania, informacja ta jest wskazywana dla najmocniejszej wyjścia lub technologii.

W przypadku współczesnych powerbanków moc 10 W lub mniej jest uważana za raczej niską; między innymi zwykle oznacza to, że urządzenie nie obsługuje szybkiego ładowania. Niemniej jednak podobne cechy nie są kosztowne i często okazują się wystarczające do prostych codziennych zadań; dlatego na rynku dostępnych jest wiele modeli o podobnych wskaźnikach. Moc 12 – 15 W jest również stosunkowo niewielka, 18 W można zaliczyć do poziomu średniego, 20 – 25 W i 30 – 50 W uważa się za poziom zaawansowany, a w niektórych rozwiązaniach parametr ten może przekraczać 60 W .

Generalnie wyższa moc wyjściowa ma pozytywny wpływ na szybkość ładowania, lecz w praktyce z tym parametrem wiąże się szereg niuansów. Po pierwsze, odpowiednia moc musi być obsługiwana nie tylko przez powerbank, lecz także przez ładow...any gadżet - w przeciwnym razie szybkość procesu będzie ograniczona charakterystyką gadżetu. Po drugie, aby w pełni wykorzystać możliwości powerbanku, może być konieczna kompatybilność z konkretną technologią szybkiego ładowania (patrz „Szybkie ładowanie”).

Funkcje

Dodatkowe funkcje i cechy charakterystyczne przewidziane w konstrukcji powerbanku. Lista takich funkcji może obejmować w szczególności wyświetlacz informacyjny, tryb hubu USB, fotokomórkę do ładowania słonecznego, źródło światła (latarkę lub lampkę), a także obudowę o zwiększonym stopniu ochrony przed wstrząsami. Oto bardziej szczegółowy opis każdej pozycji:

— Wyświetlacz informacyjny. Własny wyświetlacz montowany na obudowie powerbanku. Z reguły ma najprostszą matrycę LCD, która może wyświetlać 2 - 3 symbole, a w niektórych przypadkach osobne ikony specjalne. Niemniej jednak, nawet taki ekran dostarcza wiele dodatkowych informacji, ułatwia zarządzanie powerbankiem i monitorowanie jego stanu.

— Hub USB. Możliwość pracy w charakterze huba USB (rozdzielacza). W tym trybie własne złącza USB akumulatora zewnętrznego działają jako wejścia USB komputera PC lub laptopa, do którego podłączony jest powerbank. Samo podłączenie z reguły również odbywa się przez USB, przy tym akumulator może się ładować. Funkcja ta jest wygodna przede wszystkim dlatego, że pozwala wykorzystać jeden port USB jednocześnie do ładowania powerbanku oraz do podłączenia urządzenia peryferyjnego (lub nawet kilku). Jednak nie zaszkodzi upewnić się, aby ten port miał wystarczającą moc do obs...ługi wszystkich tych funkcji; a prędkość ładowania może być dość niska. Jeśli powerbank jest w pełni naładowany, może się również sprawdzić jako klasyczny hub USB: dla zwiększenia liczby portów dostępnych do podłączenia urządzeń peryferyjnych, a także jako rodzaj zewnętrznego przedłużacza USB (na przykład, jeśli jest wolne USB jest tylko na tylnym panelu obudowy, do którego trudno się dostać).

— Latarka. W danym przypadku latarka oznacza wbudowane źródło światła o stosunkowo małej mocy, z reguły kierunkowe (w przeciwieństwie do lampki opisanej poniżej). Takie źródło pełni funkcję pomocniczą; może się przydać np. do oświetlania drogi w nocy, do krótkotrwałego oświetlenia w ciemnym pomieszczeniu itp.

— Lampka. Wbudowane źródło światła, zwykle w postaci podłużnego panelu kilku diod LED; taki panel może być składany. W przeciwieństwie do latarek (patrz wyżej), lampki dostarczają nie ukierunkowane, lecz rozproszone światło, które ma mniejszy zasięg, ale obejmuje szerszy obszar. Takie oświetlenie może się przydać np. do czytania, do podświetlenia pokoju podczas przerwy w dostawie prądu, a nawet do stworzenia określonej atmosfery.

— Odporność na wstrząsy. Zwiększona ochrona przed wstrząsami i uderzeniami. Konkretny stopień takiej ochrony może być różny, należy to wyjaśnić sięgając do oficjalnej dokumentacji; jednak większość modeli w tej kategorii jest w stanie wytrzymać upadek z wysokości około 1 - 1,2 m na płaską twardą powierzchnię, przynajmniej bez konsekwencji. Cóż, w każdym razie takie urządzenia będą bardziej odporne na oddziaływanie mechaniczne niż te konwencjonalne. Warto również zauważyć, że ochrona przeciwwstrząsowa w nowoczesnych powerbankach najczęściej łączy się z ochroną przed kurzem i wilgocią (patrz wyżej), choć od tej reguły są wyjątki.

— Ładowanie ze słońca. Możliwość ładowania powerbanku ze słońca lub innego jasnego źródła światła. W tym celu w obudowie zainstalowane jest odpowiednie urządzenie - bateria słoneczna (fotokomórka). Funkcja ta jest szczególnie przydatna, gdy jesteś z dala od cywilizacji - na przykład w wędrówce. I choć sprawność paneli słonecznych na ogół nie jest bardzo wysoka, to jednak przy długim przebywaniu w jasnym świetle można zgromadzić całkiem sporo energii.

Materiał obudowy

Podstawowy materiał, używany w konstrukcji obudowy powerbanku.

Pomimo tradycyjnego tworzywa sztucznego, w dzisiejszych czasach akumulatory zewnętrzne produkowane są w obudowach wykonanych z bardziej zaawansowanych i/lub „prestiżowych” materiałów. Spośród tych materiałów najbardziej rozpowszechnione jest aluminium; również w sprzedaży można znaleźć produkty wykonane ze stali, cynku, skóry, tkaniny, a nawet drewna. Oto główne cechy każdej odmiany:

- Tworzywo sztuczne. Najpopularniejszy materiał do obudów współczesnych powerbanków. Tworzywo sztuczne z jednej strony jest niedrogie, z drugiej dość praktyczne i ma niewielką wagę, z trzeciej pozwala na łatwe tworzenie obudów o dowolnym kształcie i kolorze, co jest szczególnie ważne w przypadku urządzeń o nietypowym designie. Pod względem wytrzymałości i niezawodności zwykłe tworzywo sztuczne jest nieco gorsze od metali; jednak w codziennym użytkowaniu ta różnica nie jest krytyczna – chyba że rysy na takiej obudowie będą pojawiały się szybciej. Do warunków ekstremalnych produkowane są obudowy ze specjalnego, odpornego na wstrząsy tworzywa sztucznego.

- Aluminium. Obudowy ze stopów aluminium charakteryzują się dużą wytrzymałością i niską wagą; dodatkowo wyglądają stylowo i solidnie, a ich oryginalny...stan wizualny zachowuje się dłużej dzięki odporności na zarysowania. Główną wadą aluminium jest wyższy w stosunku do tworzywa sztucznego koszt.

- Stal. Stal wyróżnia się wysoką wytrzymałością i niezawodnością, w tych wskaźnikach przewyższa nawet aluminium, nie wspominając o tworzywie sztucznym. Z drugiej strony materiał ten ma znaczną wagę, dlatego jest używany znacznie rzadziej.

- Skóra. Twarda obudowa (plastikowa lub metalowa) z dodatkową powłoką ze skóry. Takie pokrycie nie wpływa na funkcjonalność i pełni rolę czysto estetyczną: nadaje urządzeniu stylowy i solidny wygląd, zamieniając powerbank w modne akcesorium. Należy jednak pamiętać, że przy projektowaniu takich produktów (szczególnie niedrogich) często stosuje się sztuczną skórę, która jest zauważalnie gorsza od skóry naturalnej pod względem wytrzymałości, trwałości, a czasem wyglądu. Obecność skóry naturalnej rzutuje na cenę – jej koszt może przekroczyć połowę ceny całego powerbanku.

- Tkanina. Twarda obudowa (zwykle plastikowa) z zewnętrznym pokryciem z tkaniny. Takie pokrycie nie tylko nadaje urządzeniu dość oryginalny wygląd, lecz też pewne praktyczne korzyści: tkanina jest przyjemna w dotyku i prawie nie wyślizguje się w dłoni, co zmniejsza ryzyko upuszczenia powerbanku. Z drugiej strony różne zanieczyszczenia są trudne do usunięcia z takiej powierzchni, nie ma ona zasadniczych przewag nad plastikiem czy metalem, lecz kosztuje znacznie więcej. Dlatego obudowy z tkaniny nie są zbyt popularne.

- Drewno. Kolejny materiał używany głównie ze względu na swój oryginalny wygląd, a nie zalety praktyczne. Niemniej jednak pod wieloma praktycznymi cechami drewno nie ustępuje plastikowi; a niektórzy użytkownicy uważają również naturalne pochodzenie tego materiału za ważną zaletę. Z drugiej strony obudowy drewniane nie mają zauważalnych przewag nad plastikowymi, lecz są znacznie droższe.

- Cynk. Stopy cynku w większości swoimi właściwościami są zbliżone do opisanych powyżej aluminiowych, jednak z wielu powodów (w szczególności ze względu na większą złożoność produkcji) są stosowane niezwykle rzadko.
Dynamika cen
Hoco B27-15000 często porównują
Asus ZenPower często porównują