Wydmuch powietrza
Kierunek, w którym strumień powietrza wychodzi z chłodnicy aktywnej (patrz „Rodzaj”).
Parametr ten dotyczy przede wszystkim modeli używanych z procesorami, warianty mogą być następujące:
— W bok (rozpraszanie). Ten format pracy jest typowy dla chłodnic o tzw. konstrukcji wieżowej. W takich modelach wentylator jest instalowany prostopadle do podłoża stykającego się z procesorem, dzięki czemu strumień powietrza porusza się równolegle do płyty głównej. Zapewnia to maksymalną wydajność: ogrzane powietrze nie wraca do procesora i innych elementów systemu, lecz jest rozpraszane w obudowie (i prawie natychmiast wychodzi na zewnątrz, jeśli komputer ma przynajmniej jeden wentylator obudowy). Główną wadą tego wariantu jest wysoka wysokość konstrukcji, która może skomplikować jej umieszczenie w niektórych obudowach. Jednak w większości przypadków ten punkt nie jest kluczowy – zwłaszcza jeśli chodzi o potężny układ chłodzenia przeznaczony do zaawansowanego systemu z wydajnym „gorącym” procesorem. Tak więc to właśnie rozpraszanie poprzeczne jest obecnie najpopularniejszym wariantem - zwłaszcza w chłodnicach o maksymalnym TDP 150 W i wyższym (choć mniej wydajne modele często używają tego układu).
— W dół (na płytę główną). Ten format pracy pozwala na „ułożenie” wentylatora wraz z radiatorem prosto na płycie głównej, znacznie zmniejszając wysokość całej chłodnicy (w porównaniu do modeli wykorzystujących nadmuch boczny). Z drugiej strony ten format pracy nie...jest zbyt wydajny – wszak zanim rozproszy się po obudowie, gorące powietrze znów obdmuchuje płytę z procesorem. Tak więc w dzisiejszych czasach ten wariant jest stosunkowo rzadki i występuje głównie w chłodnicach o małej mocy i dopuszczalnym TDP do 150 W. A na takie modele należy zwracać uwagę głównie wtedy, gdy w obudowie jest mało miejsca, a niska wysokość chłodnicy jest ważniejsza niż wysoka wydajność.
Dwuwieżowa konstrukcja
Funkcja występująca w niektórych aktywnych chłodnicach procesorowych (patrz „Przeznaczenie”).
Aby zapoznać się z ogólnym układem wieży, patrz "Wydmuch strumienia powietrza" poniżej.
Konstrukcja dwuwieżowa oznacza, że chłodnica ma dwie jednostki robocze – czyli dwa wentylatory i dwa radiatory. W związku z tym, w konstrukcji jest więcej rurek cieplnych niż w modelach z jedną wieżą - co najmniej jest ich 4, a częściej 5 - 6 lub nawet więcej. Taki układ może znacznie zwiększyć wydajność chłodzenia; z drugiej strony zauważalnie wpływa on również na wymiary, wagę i cenę.
TDP
Maksymalny TDP zapewniany przez układ chłodzenia. Należy pamiętać, że parametr ten jest podawany tylko dla rozwiązań wyposażonych w radiatory (patrz „Rodzaj”); dla wentylatorów wykonywanych osobno o sprawności decydują inne parametry, przede wszystkim wartości przepływu powietrza (patrz wyżej).
TDP można opisać jako ilość ciepła, którą układ chłodzenia jest w stanie usunąć z obsługiwanego podzespołu. W związku z tym, do normalnej pracy całego układu konieczne jest, aby TDP układu chłodzenia nie było niższe niż rozpraszanie ciepła tego elementu (dane dotyczące rozpraszania ciepła są zwykle podane w szczegółowej specyfikacji komponentu). A najlepiej wybrać chłodnice z rezerwą mocy co najmniej 20 - 25% - da to dodatkową gwarancję w przypadku wymuszonych trybów pracy i sytuacji awaryjnych (w tym zanieczyszczenia obudowy i spadku efektywności wymiany powietrza).
Jeśli chodzi o konkretne liczby, to najskromniejsze współczesne układy chłodzenia zapewniają TDP
do 100 W, najbardziej zaawansowane —
do 250 W i nawet
więcej.
Maks. prędkość obrotowa
Najwyższa prędkość obrotowa jaką obsługuje wentylator układu chłodzenia; w przypadku modeli bez regulatora prędkości (patrz poniżej), podawana jest prędkość nominalna. W „najwolniejszych” współczesnych wentylatorach maksymalna prędkość
nie przekracza 1000 obr./min, w „najszybszych” może to być
do 2500 obr./min, a nawet
więcej.
Należy pamiętać, że parametr ten jest ściśle powiązany ze średnicą wentylatora (patrz wyżej): im mniejsza średnica, tym wyższe muszą być obroty, aby osiągnąć żądane wartości przepływu powietrza. W takim przypadku prędkość obrotowa wpływa bezpośrednio na poziom hałasu i wibracji. Dlatego uważa się, że najlepiej jest zapewnić wymaganą objętość powietrza dużymi i stosunkowo „wolnymi” wentylatorami; a stosowanie „szybkich” małych modeli ma sens w przypadku, gdy kompaktowość ma kluczowe znaczenie. Przy porównaniu prędkości modeli tej samej wielkości - wyższe obroty mają pozytywny wpływ na wydajność, lecz zwiększają nie tylko poziom hałasu, ale także wzrost ceny i zużycia energii.
Maks. przepływ powietrza
Maksymalny przepływ powietrza, jaki może wytworzyć wentylator chłodzący; jest mierzony w CFM - stopach sześciennych na minutę.
Im wyższy liczba CFM, tym wydajniejszy jest wentylator. Z drugiej strony wysoka wydajność wymaga albo dużej średnicy (co wpływa na rozmiar i koszt) albo dużej prędkości (co zwiększa hałas i wibracje). Dlatego przy wyborze warto nie gonić za maksymalnym przepływem powietrza, lecz stosować specjalne formuły, które pozwalają obliczyć wymaganą liczbę CFM w zależności od rodzaju i mocy chłodzonego elementu oraz innych parametrów. Takie formuły można znaleźć w specjalnych źródłach. Jeśli chodzi o konkretne liczby, to w najskromniejszych systemach wydajność
nie przekracza 30 CFM, a w najmocniejszych systemach może to być nawet 80 CFM, a nawet
więcej.
Należy również pamiętać, że rzeczywista wartość przepływu powietrza przy największej prędkości jest zwykle niższa od deklarowanego maksimum; patrz "Ciśnienie statyczne", aby uzyskać szczegółowe informacje.
Średni czas bezawaryjnej pracy
Całkowity czas, przez który wentylator chłodzący nie ulegnie awarii. Należy pamiętać, że po wyczerpaniu tego czasu urządzenie niekoniecznie ulegnie zepsuciu – wiele współczesnych wentylatorów ma znaczny zapas wytrzymałości i jest w stanie pracować jeszcze przez jakiś czas. Przy tym, warto oceniać ogólną trwałość układu chłodzenia właśnie według tego parametru.
Min. poziom hałasu
Najniższy poziom hałasu wytwarzany przez układ chłodzenia podczas pracy.
Parametr ten jest wskazywany tylko dla tych modeli, które mają regulację wydajności i mogą pracować ze zmniejszoną mocą. W związku z tym minimalny poziom hałasu to poziom hałasu w trybie „najcichszym”, deklarowana głośność pracy, która w danym modelu nie może być mniejsza.
Dane te przydadzą się przede wszystkim tym, którzy starają się maksymalnie zmniejszyć poziom hałasu i, co jest nazywane, „walką o każdy decybel”. Należy tu jednak zaznaczyć, że w wielu modelach wartości minimalne wynoszą około 15 dB, a w tych najcichszych – tylko 10 – 11 dB. Ta głośność jest porównywalna do szelestu liści i prawie jest niesłyszalna na tle hałasu otoczenia nawet w pomieszczeniu mieszkalnym w nocy, nie mówiąc już o głośniejszych warunkach, a różnica między 11 a 18 dB w tym przypadku nie jest w żaden sposób znacząca dla ludzkiej percepcji. Tabela porównawcza dla dźwięku zaczynającego się od 20 dB jest podana w sekcji "Poziom hałasu" poniżej.
Poziom hałasu
Standardowy poziom hałasu w układzie chłodzenia podczas pracy. Zazwyczaj w tym punkcie wskazywany jest maksymalny hałas podczas normalnej pracy, bez przeciążeń i innych „ekstremalnych” sytuacji.
Należy zaznaczyć, że poziom hałasu jest podawany w decybelach i jest to wielkość nieliniowa. Tak więc, najłatwiejszym sposobem oszacowania rzeczywistej głośności jest skorzystanie z tabel porównawczych. Oto tabela wartości występujących we współczesnych układach chłodzenia:
20 dB - ledwo słyszalny dźwięk (cichy szept osoby w odległości około 1 m, tło dźwiękowe na otwartym polu poza miastem przy spokojnej pogodzie);
25 dB - bardzo cicho (zwykły szept w odległości 1 m);
30 dB - cichy (zegar ścienny). To właśnie taki hałas zgodnie z normami sanitarnymi jest maksymalnym dopuszczalnym dla stałych źródeł dźwięku w nocy (od 23.00 do 7.00). Oznacza to, że jeśli komputer jest używany w nocy, pożądane jest, aby głośność układu chłodzenia nie przekraczała tej wartości.
35 dB - rozmowa półgłosem, tło dźwiękowe w cichej bibliotece;
40 dB - stosunkowo cicha rozmowa, lecz już pełnym głosem. Maksymalny dopuszczalny poziom hałasu w dzień zgodnie z normami sanitarnymi dla pomieszczeń mieszkalnych, od 7.00 do 23.00. Jednak nawet najgłośniejsze układy chłodzenia zwykle nie osiągają tej wartości, maksimum dla takiego sprzętu wynosi około 38 - 39 dB.
Liczba rurek cieplnych
Liczba rurek cieplnych w układzie chłodzenia
Rura cieplna to szczelna konstrukcja zawierająca ciecz o niskiej temperaturze wrzenia. Gdy jeden koniec rury jest podgrzewany, ciecz ta odparowuje i skrapla się na drugim końcu, pobierając ciepło ze źródła ogrzewania i przekazując je do chłodnicy. Obecnie takie urządzenia są szeroko stosowane głównie w układach chłodzenia procesorów (patrz „Przeznaczenie”) - łączą one podłoże, które ma bezpośredni kontakt z procesorem, i radiator aktywnej chłodnicy. Producenci dobierają liczbę rurek w oparciu o ogólną wydajność chłodnicy (patrz „Maksymalny TDP”); jednak modele o podobnych wartościach TDP mogą nadal znacząco różnić się tym parametrem. W takich przypadkach warto uwzględniać następujące punkty: wzrost liczby rurek cieplnych zwiększa efektywność wymiany ciepła, lecz także zwiększa gabaryty, wagę i koszt całej konstrukcji.
Jeśli chodzi o liczby, w najprostszych modelach przewidziano
1 - 2 rurki cieplne, a w najbardziej zaawansowanych i wydajnych układach procesorowych liczba ta może wynosić
7 lub więcej.