Rodzaj
Ogólny rodzaj urządzenia.
Oprócz tradycyjnych laptopów obecnie można spotkać takie odmiany jak netbooki,
ultrabooki,
laptop i tablet 2 w 1 czy
laptopy konwertowalne. Oto ich główne cechy:
— Laptop. Laptopy o mniej lub bardziej tradycyjnym formacie, które nie należą do żadnej z opisanych poniżej kategorii. Klasyczny, najpopularniejszy rozmiar ekranu w takich modelach to
15,6".
Laptopy 13.3" i
14" są uważane za kompaktowe,
laptopy z ekranem 17,3" — za duże, a w zaawansowanych modelach do gier są też większe wyświetlacze. Jednocześnie pod względem specyfikacji i możliwości urządzenia z tej kategorii są również bardzo zróżnicowane: od „maszyn do pisania” przeznaczonych do zadań edukacyjnych i domowych, po zaawansowane rozwiązania do gier, stacje robocze i kompleksy multimedialne.
— Ultrabook. Wysokiej klasy laptopy, które łączą w sobie kompaktowość, lekkość i zaawansowane funkcje. Przekątna w ultrabookach waha się od 11" do 14", grubość obudowy nie przekracza 21 mm, podczas gdy wyposażenie wewnętrzne to zazwyczaj potężne procesory, duża wielkość pamięci RAM, szybkie dyski typu SSD i inne podobne rozwiązania. Ponadto wiele urządzeń z tej kategorii wykonanych jest w charakterystycznym stylowym wzornictwie i również zaprojek
...towanych z myślą o roli modnych dodatków.
— Laptop konwertowalny 360°. Kolejny rodzaj laptopa, który może zamienić się w tablet. Jednak w przeciwieństwie do opisanych powyżej laptopów-tabletów, w tym przypadku nie używa się zdejmowanej klawiatury, jednak specjalne obrotowe połączenie górnej i dolnej części. Konstrukcja tego połączenia jest taka, że górną część urządzenia można obrócić o 360° i umieścić na klawiaturze ekranem do góry. W ten sposób laptop konwertowalny można przekształcić z laptopa w tablet bez zdejmowania dolnej połowy; jest to podstawowa różnica między takimi modelami a opisanym powyżej modelem „2 w 1”. Ten format pracy jest generalnie wygodniejszy - nie trzeba szukać miejsca na zdjętą klawiaturę, nie ma ryzyka jej zapomnienia lub zgubienia; dodatkowo konstrukcja mocowania zazwyczaj pozwala na użycie urządzenia w formacie „ramki na zdjęcia” - odchylanego tabletu na podstawce bez klawiatury. W związku z tym laptopy konwertowalne są obecnie bardziej rozpowszechnione niż składane tablety-laptopy. Ich wady to brak możliwości zmniejszenia wagi poprzez zdjęcie klawiatury. Przekątna takich urządzeń może wynosić od 12" do 17".
— 2 w 1 (laptop-tablet). Laptopy, które można zamienić w tablety. W takich modelach całe „wypełnienie” (a przynajmniej jego kluczowe elementy) znajduje się w górnej połowie, ekran jest czuły na dotyk, a dolną połowę z klawiaturą można całkowicie odłączyć. Urządzenia te różnią się od tradycyjnych tabletów, które również mogą być wyposażone w klawiatury, w trzech głównych punktach. Po pierwsze, mocniejszy sprzęt: w szczególności większość modeli 2 w 1 ma pełnowartościowe procesory do laptopów (do Core i7 włącznie), podczas gdy tablety najczęściej używają procesorów CPU, podobnych do tych w smartfonach. Po drugie, większy rozmiar ekranu, zwykle 13–15 cali. Po trzecie, klawiatura laptopa-tabletu może zawierać nie tylko zestaw klawiszy i zapasową baterię, jednak także niektóre elementy systemu: dedykowaną kartę graficzną, dodatkowe miejsce do przechowywania itp.
Ogólnie rzecz biorąc, modele 2 w 1 są bardziej uniwersalne niż tradycyjne laptopy; jednak w naszych czasach są one znacznie mniej powszechne niż inne podobne odmiany laptopów konwertowalnych (patrz poniżej). Wynika to z faktu, że odłączana klawiatura nie zawsze jest wygodna: podczas korzystania z urządzenia w formacie tabletu zwykle trzeba ją zdjąć; nie zawsze można znaleźć miejsce na zdjętą klawiaturę w pobliżu; poza tym można o niej zapomnieć lub utracić przez nieostrożność. Niemniej jednak ta konstrukcja ma również zalety: na przykład, jeśli w drodze wystarczy tablet, nie ma potrzeby posiadania przy sobie dodatkowego obciążenia w postaci dolnej połowy urządzenia.Powłoka ekranu
—
Błyszcząca. Błyszcząca powierzchnia poprawia ogólną jakość obrazu: przy pozostałych warunkach równych obraz na takim ekranie wygląda jaśniej i bardziej kolorowo niż na matowym. Z drugiej strony na takiej powierzchni bardzo zauważalne są zanieczyszczenia, a w jasnym otoczeniu pojawia się na niej dużo odblasków, które mogą mocno przeszkadzać w oglądaniu. Dlatego zamiast klasycznego połysku w laptopach coraz częściej stosuje się antyrefleksyjną wersję takiej powłoki (patrz poniżej). Niemniej jednak ta opcja nadal nie traci na popularności: kosztuje nieco mniej niż powłoka antyrefleksyjna, a przy miękkim, stosunkowo słabym oświetleniu może nawet zapewnić przyjemniejszy dla oka obraz.
—
Matowa. Matowa powłoka jest niedroga i nie powoduje odblasków, nawet przy dość jasnym oświetleniu. Z drugiej strony obraz na takim ekranie okazuje się zauważalnie ciemniejszy niż na podobnym błyszczącym wyświetlaczu. Jednak ten szczegół można skompensować różnymi rozwiązaniami konstrukcyjnymi (przede wszystkim dobrym zapasem jasności); więc tę opcję można znaleźć we wszystkich kategoriach nowoczesnych laptopów - od niedrogich modeli do pracy z dokumentami po najlepsze konfiguracje do gier.
—
Błyszcząca (antyrefleksyjna). Odmiana opisanej powyżej błyszczącej powłoki, mająca na celu ograniczenie odblasków z zewnętrznych źródeł światła. Takie ekrany naprawdę odbijają zauważalnie
...mniej niż tradycyjne błyszczące (lub nawet nie dają odblasków); jednocześnie pod względem jakości obrazu są co najmniej lepsze od matowych. Więc to właśnie ten rodzaj powłoki jest obecnie najbardziej popularny.Test 3DMark06
Wynik pokazany przez procesor laptopa w teście 3DMark06.
Ten test ma na celu przede wszystkim przetestowanie wydajności w grach - w szczególności zdolności procesora do obsługi zaawansowanej grafiki i elementów sztucznej inteligencji. Wyniki testu są przedstawiane w postaci punktów; im wyższa ich liczba, tym wyższa wydajność testowanego układu. Wysokie wyniki w teście 3DMark06 są szczególnie ważne w przypadku
laptopów gamingowych.
Test Passmark CPU Mark
Wynik pokazany przez procesor laptopa w teście Passmark CPU Mark.
Passmark CPU Mark to kompleksowy test, bardziej szczegółowy i niezawodny niż popularny 3DMark06 (patrz wyżej). Sprawdza nie tylko możliwości gier procesora, ale także jego wydajność w innych trybach, na podstawie czego wyświetla ogólny wynik; zgodnie z tym wynikiem można dość rzetelnie ocenić procesor jako całość (im więcej punktów, tym wyższa wydajność).
Maksymalna obsługiwana ilość pamięci RAM
Maksymalna ilość pamięci RAM, którą można zainstalować na laptopie. Zależy w szczególności od rodzaju stosowanych modułów pamięci, a także od liczby gniazd na nie. Warto zwrócić uwagę na parametr ten przede wszystkim, jeśli laptop jest kupowany z dalszą perspektywą na
rozszerzenie ilości RAM, a ilość faktycznie zainstalowanej w nim pamięci jest zauważalnie mniejsza niż maksymalna dostępna. Tak więc w laptopach pamięć RAM można rozbudować do
16 GB,
24 GB,
32 GB, 48 GB,
64 GB i nawet więcej —
128 GB.
Liczba gniazd pamięci
Łączna liczba slotów na moduły RAM w laptopie; w rzeczywistości - maksymalna liczba kości, które można jednocześnie zainstalować w danym modelu.
Możliwość aktualizacji pamięci RAM bezpośrednio zależy od tego wskaźnika. Tak więc w niedrogich modelach często jest tylko
1 slot, a jedyną opcją aktualizacji jest zastąpienie „natywnej” kości. W bardziej zaawansowanych urządzeniach można przewidzieć
dwa, a nawet
cztery sloty, podczas gdy niektóre z nich mogą być wolne w początkowej konfiguracji.
Specjalnym przypadkiem jest wbudowana pamięć RAM; jest bardziej kompaktowa i tańsza niż wymienne moduły, ale w ogóle nie podlega wymianie. Jednocześnie w niektórych laptopach pamięć RAM jest
tylko wbudowana, w innych można ją uzupełnić
jednym lub nawet dwoma slotami na wymienne kości.
Rodzaj dysku
Rodzaj dysku standardowo zainstalowanego w laptopie.
Klasyczne
dyski twarde (HDD) we współczesnych laptopach są dość rzadkie w czystej postaci. Zamiast tego,
półprzewodnikowe moduły SSD stają się coraz bardziej powszechne, w tym w kombinacjach
HDD+SSD i
SSHD+SSD. Także warto zaznaczyć, że wśród takich modułów bardzo powszechne
są dyski SSD M.2, które ponadto mogą
obsługiwać NVMe i/lub należą do zaawansowanej serii Intel Optane. Oto główne cechy tych opcji w różnych kombinacjach (a także inne opcje dysków, które można znaleźć we współczesnych laptopach):
— HDD. Klasyczny dysk twardy wykorzystujący nośnik magnetyczny, nie uzupełniany przez żaden inny rodzaj pamięci. Dyski HDD wyróżniają się niskim kosztem w przeliczeniu na gigabajt pojemności, co umożliwia tworzenie bardzo pojemnych i jednocześnie dość niedrogich nośników. Z drugiej strony takie pamięci są uważane za mniej doskonałe niż dyski SSD: w szczególności są raczej powolne, a poza tym nie są odporne na uderzenia i wstrząsy (to ostatnie jest szczególnie ważne biorąc pod uwagę fakt, że laptopy są pierwotnie urządzeniami przenośnymi). Dlatego ta opcja w naszych czasach jest dość rzadka, głównie wśród niedrogich konfiguracji.
— SSD. Pamięć półprzewodnikowa oparta na technologii Flash. Gene
...ralnie dyski tego typu są znacznie droższe niż dyski HDD o tej samej wielkości, ale mają nad nimi szereg zalet - przede wszystkim jest to duża prędkość działania, a także zdolność do bezproblemowego wytrzymywania dość silnych wstrząsów i wibracji. Warto podkreślić jednak, że w tym przypadku chodzi o dyski SSD w oryginalnym formacie, które nie wykorzystują interfejsu M.2, nie należą do serii Optane i nie są modułami eMMC ani UFS (opis tych wszystkich funkcji znajduje się poniżej). Jest to najprostsza i najłatwiej dostępna forma pamięci flash - w szczególności najczęściej wykorzystuje ona połączenie SATA, co nie pozwala na pełne wykorzystanie potencjału takiej pamięci. Z drugiej strony, nawet „zwykłe” moduły SSD nadal działają dużo szybciej niż dyski HDD i są dużo tańsze niż bardziej zaawansowane rozwiązania.
— SSD M.2. Moduł SSD wykorzystujący złącze M.2. Ogólne informacje na temat dysków SSD można znaleźć powyżej; a złącze M.2 zostało zaprojektowane specjalnie dla zaawansowanych, ale niewielkich komponentów wewnętrznych, w tym dysków półprzewodnikowych. Jedną z cech takiego połączenia jest to, że najczęściej odbywa się ono zgodnie ze standardem PCI-E - zapewnia to dużą prędkość transmisji danych (do 8 GB/s, potencjalnie więcej) i pozwala na wykorzystanie wszystkich możliwości dysków SSD. Jednocześnie istnieją moduły M.2 pracujące na starszym interfejsie SATA - jego prędkość nie przekracza 600 MB/s, ale taki sprzęt kosztuje mniej niż moduły z M.2 PCI-E. Aby uzyskać więcej informacji, zobacz „Interfejs dysku M.2” - właśnie ten punkt umożliwia ocenę konkretnych możliwości dysku SSD M.2.
— SSD M.2 Optane. Dysk SSD M.2 (patrz wyżej) należący do serii Intel Optane. Główną cechą takich modułów jest wykorzystanie technologii 3D Xpoint - różni się ona znacznie od NAND, na której budowano większość konwencjonalnych modułów SSD. W szczególności 3D Xpoint pozwala na dostęp do danych na poziomie poszczególnych komórek i obejście się bez dodatkowych operacji, co przyspiesza pracę i zmniejsza opóźnienia. Co więcej, taka pamięć jest znacznie trwalsza. Jej główną wadą jest dość wysoki koszt. Warto też zwrócić uwagę, że przewaga Optane nad bardziej tradycyjnymi modułami SSD jest najbardziej widoczna przy tzw. „płytkiej głębokości kolejki” - czyli przy niewielkim obciążeniu dysku, gdy jednocześnie odbiera on niewielką liczbę żądań. Jednak większość codziennych zadań (praca z dokumentami, surfowanie po sieci, stosunkowo mało wymagające gry) realizowana jest w tym trybie, więc ten szczegół można przypisać zaletom - zwłaszcza, że przewaga Optane, choć maleje, nie znika wraz ze wzrostem obciążenia.
— Dysk SSD M.2 NVMe. NVMe to standard przesyłania danych zaprojektowany specjalnie dla SSD. Wykorzystuje magistralę PCI-E i pozwala maksymalnie ujawnić potencjał tej pamięci, znacznie zwiększając prędkość wymiany danych. Może to być zarówno jedyny dysk, jak i dodatek do dysku HDD lub SSHD. Początkowo uważano, że NVMe ma sens stosować głównie w zestawach komputerowych o wysokiej wydajności, zwłaszcza w grach. Jednak rozwój i niski koszt produkcji sprawiły, że takie dyski spotykane są także w prostszych laptopach.
— HDD+SSD. Obecność dwóch oddzielnych dysków w laptopie - HDD i zwykłego dysku SSD (nie M.2, nie Optane). Zalety i wady tego typu dysków opisano szczegółowo powyżej; a ich połączenie w jeden system pozwala łączyć zalety i częściowo kompensować wady. W takich przypadkach dysk SSD jest zwykle o zauważalnie mniejszej pojemności niż dysk twardy i służy do przechowywania danych, dla których ważna jest wysoka prędkość dostępu: system operacyjny, programy operacyjne itp. Z kolei wygodnie jest na dysku twardym przechowywać informacje o znacznej pojemności, a jednocześnie nie wymagające specjalnej prędkości dostępu; klasycznym przykładem są pliki multimedialne i dokumenty. Ponadto moduł półprzewodnikowy może służyć jako szybka pamięć podręczna dysku twardego - podobnie jak dysk SSHD opisany poniżej. Zwykle wymaga to jednak specjalnych ustawień oprogramowania, podczas gdy tryb „dwóch oddzielnych dysków” jest zwykle dostępny domyślnie.
Warto również zauważyć, że we współczesnych laptopach pakiety HDD są coraz częściej używane nie ze zwykłymi dyskami SSD, ale z bardziej zaawansowanymi modułami M.2 (w tym M.2 Optane). Niemniej jednak ta opcja jest nadal używana - głównie wśród stosunkowo niedrogich konfiguracji.
— SSHD. Dysk typu combo, który łączy dysk twardy (HDD) i moduł półprzewodnikowy (SSD). Różni się od opisanej powyżej kombinacji HDD+SSD pod dwoma względami. Po pierwsze, oba nośniki są w tej samej obudowie i są postrzegane przez system jako całość. Po drugie, przeważnie dysk twardy jest używany bezpośrednio do przechowywania danych, a pamięć SSD pełni rolę usługową - działa jako szybka pamięć podręczna dla dysku twardego. W praktyce wygląda to tak: dane z dysku twardego, do którego użytkownik najczęściej uzyskuje dostęp, są kopiowane na dysk SSD i przy kolejnym dostępie ładowane są z dysku SSD, a nie z HDD. Pozwala to znacznie przyspieszyć pracę w porównaniu z konwencjonalnymi dyskami twardymi. Co prawda pod względem wydajności takie „hybrydy” są nadal gorsze nawet od konwencjonalnych dysków SSD, nie wspominając o rozwiązaniach M.2 i Optane - ale kosztują znacznie mniej.
— HDD+SSD M.2. Połączenie klasycznego dysku twardego z półprzewodnikowym modułem SSD przy użyciu złącza M.2. Aby uzyskać więcej informacji na temat tej kombinacji, zobacz „HDD+SSD”: prawie wszystko, co tam podano, ma również znaczenie dla tego przypadku, chyba, że dyski SSD M.2 są w stanie zapewnić wyższą prędkość operacyjną (patrz również powyżej - w punkcie „SSD M.2”).
— HDD+Optane M.2. Połączenie klasycznego dysku twardego z półprzewodnikowym modułem SSD, który wykorzystuje złącze M.2 i należy do serii Intel Optane. Ta kombinacja jest ogólnie podobna do pakietu „HDD+SSD” (patrz wyżej), chyba że możliwości dysków Optane są bardziej zaawansowane (patrz także powyżej - „SSD M.2 Optane”).
— SSHD+SSD M.2. Połączenie dysku SSD z półprzewodnikowym modułem SSD M.2. Ogólnie jest podobny do kombinacji „HDD + SSD M.2” (patrz wyżej), z tym, że zamiast konwencjonalnego dysku twardego używany jest bardziej zaawansowany i szybki dysk hybrydowy (patrz również powyżej). To dodatkowo zwiększa koszt, ale poprawia wydajność.
— eMMC. Rodzaj dysków półprzewodnikowych, pierwotnie używany jako wbudowana pamięć trwała w smartfonach i tabletach, ale ostatnio instalowany w laptopach. Różni się od SSD (patrz wyżej) z jednej strony niższym kosztem i dobrą energooszczędnością, z drugiej strony mniejszą prędkością i niezawodnością. W związku z tym eMMC występuje obecnie głównie wśród laptopów konwertowalnych i laptopów-tabletów (patrz „Rodzaj”) - dla nich niski pobór mocy jest ważniejszy niż maksymalna wydajność. Należy również pamiętać, że takie dyski są zwykle wbudowane i nie wymagają wymiany.
— HDD+eMMC. Połączenie klasycznego dysku twardego z modułem półprzewodnikowym eMMC. Cechy każdego typu dysków zostały szczegółowo opisane powyżej, a ich kombinacja stosowana jest głównie w urządzeniach typu „laptop-tablet” (patrz „Rodzaj”). W tym przypadku dysk eMMC jest instalowany w górnej części urządzenia i służy do przechowywania systemu operacyjnego oraz najważniejszych danych, do których potrzebuje się stałego dostępu; a dysk twardy znajdujący się w dolnej połowie służy jako dodatkowa pamięć dla dużych ilości danych (na przykład kolekcji filmów).
— SSD M.2+eMMC. Połączenie w jednym laptopie dwóch modułów półprzewodnikowych - SSD M.2 i eMMC. Aby uzyskać więcej informacji na temat cech obu typów pamięci, zobacz powyżej, a ich łączenie jest raczej egzotyczną opcją. Służy głównie do zwiększania całkowitej wielkości pamięci półprzewodnikowej bez znacznego zwiększania kosztów (warto przypomnieć, że eMMC jest tańsze niż dysk SSD M.2 o tym samym rozmiarze). Ponadto, jeśli moduł eMMC jest zwykle wbudowany, to dysk SSD M.2 jest z definicji wymienny, a w razie potrzeby można go zastąpić innym dyskiem.
— UFS. Kolejny rodzaj pamięci półprzewodnikowej, pierwotnie przeznaczony dla smartfonów i tabletów - wraz z opisanym powyżej eMMC. Różni się od tego ostatniego zarówno wysoką wydajnością, jak i zwiększonym kosztem. Wobec tego takie dyski są niezwykle rzadkie wśród laptopów: tam, gdzie brakuje możliwości eMMC, producenci zwykle używają pełnowartościowych dysków SSD.Pojemność dysku
Pojemność dysku zainstalowanego w laptopie. Jeśli istnieje kilka oddzielnych dysków (na przykład HDD+SSD, patrz „Rodzaj dysku”) - w danym rozdziale wskazuje się pojemność najbardziej pojemnego nośnika (w naszym przykładzie HDD).
Bardziej pojemny dysk pozwala na przechowywanie większej ilości danych, ale jest droższy. Warto pamiętać, że cena zależy również od rodzaju nośnika: na przykład dyski SSD są znacznie droższe niż dyski twarde tej samej wielkości. Dlatego najlepiej bezpośrednio porównywać dyski tego samego typu. Jeśli chodzi o konkretne pojemności, najbardziej skromne wskaźniki są typowe dla konfiguracji z pamięcią półprzewodnikową - SSD tego lub innego typu lub eMMC (patrz „Rodzaj dysku”): wśród nich można znaleźć rozwiązania o pojemności
240 – 360 GB, a nawet
128 GB lub mniej. Pojemności dysków twardych zaczynają się od
480 – 512 GB; pojemność
rzędu 1 TB można nazwać średnią, a najbardziej pojemne nowoczesne laptopy wyposażone są w pamięci masowe o
pojemności 2 TB lub nawet
więcej.
Interfejs dysku SSD M.2
Interfejs podłączenia, używany przez moduł SSD ze złączem M.2 zainstalowanym w laptopie (patrz „Typ dysku”).
Jedną z cech złącza M.2 i dysków z takim złączem jest to, że mogą korzystać z dwóch różnych interfejsów połączeniowych: PCI-E (w tej czy innej odmianie) lub SATA. Warto podkreślić, że ten punkt wskazuje dane modułu SSD; w samym złączu mogą być zapewnione inne opcje interfejsu, w tym bardziej zaawansowane - patrz „Interfejs łącza M.2” (na przykład dysk ze złączem
PCI-E 3.0 można umieścić w gnieździe obsługującym również szybsze złącze
PCI-E 4.0). Jednak w każdym przypadku złącze połączeniowe zwykle pozwala realizować wszystkie możliwości zainstalowanego dysku; więc ta pozycja pozwala dość rzetelnie ocenić możliwości standardowego modułu M.2.
Jeśli chodzi o konkretne interfejsy, obecnie można znaleźć głównie następujące warianty:
- SATA 3. Interfejs SATA został pierwotnie stworzony dla tradycyjnych dysków twardych. Trzecia wersja tego interfejsu jest najnowsza; zapewnia prędkość transmisji danych do 600 MB/s. To znacznie mniej niż ma PCI-E i ogólnie bardzo mało jak na standardy dysków SSD. Dlatego połączenie M.2 za pomocą SATA jest typowe głównie dla niedrogich modułów poziomu podstawowego. Jednak nawet takie nośniki są generalnie szybsze niż większość dysków twardych.
- PCI-E. Uniwersalny interfejs do podłączania wewnętrznych urządzeń peryferyjnych. Zapewnia g
...eneralnie większe prędkości niż SATA, dzięki czemu lepiej nadaje się do modułów SSD: teoretycznie PCI-E pozwala dyskom SSD, nawet najszybszym, na osiągnięcie pełnego potencjału. W praktyce obsługiwana prędkość transmisji danych może być różna - w zależności od wersji interfejsu i liczby linii (kanałów transmisji danych). Oto warianty najbardziej odpowiednie dla współczesnych laptopów:
- PCI-E 3.0 2x. Połączenie za pomocą 2 linii PCI-E w wersji 3.0. Ta wersja zapewnia prędkość około 1 GB/s na linię; w związku z tym obydwie linie dają maksymalnie nieco poniżej 2 GB/s.
- PCI-E 3.0 4x. Połączenie za pomocą 4 linii PCI-E w wersji 3.0. Zapewnia maksymalną prędkość około 4 GB/s.
- PCI-E 4.0 4x. Połączenie za pomocą 4 linii PCI-E w wersji 4.0. W tej wersji przepustowość w porównaniu do PCI-E 3.0 została podwojona - tym samym 4 linie dają maksymalną prędkość około 8 MB/s.
Warto zaznaczyć, że w przypadku złączy M.2 różne odmiany PCI-E są zwykle ze sobą dość kompatybilne - chyba że prędkość połączenia podczas pracy z obcym złączem będzie ograniczona możliwościami najwolniejszego komponentu. Na przykład podczas podłączenia modułu SSD PCI-E 3.0 4x do gniazda PCI-E 3.0 2x prędkość ta będzie odpowiadać możliwościom złącza, a podczas podłączenia do PCI-E 4.0 4x - możliwościom dysku.