Tryb nocny
Polska
Katalog   /   Klimatyzacja, ogrzewanie i zaopatrzenie w wodę   /   Ogrzewanie i kotły   /   Kotły grzewcze

Porównanie Viessmann Vitopend 100-W A1JB 30 kW 29.9 kW vs Viessmann Vitopend 100-WH1B366 30 kW 30 kW

Dodaj do porównania
Viessmann Vitopend 100-W A1JB 30 kW 29.9 kW
Viessmann Vitopend 100-WH1B366 30 kW 30 kW
Viessmann Vitopend 100-W A1JB 30 kW 29.9 kWViessmann Vitopend 100-WH1B366 30 kW 30 kW
od 3 870 zł
Produkt jest niedostępny
od 7 336 zł
Produkt jest niedostępny
Opinie
0
1
0
3
TOP sprzedawcy
Źródło energiigazgaz
Montażściennyścienny
Rodzajdwufunkcyjnydwufunkcyjny
Powierzchnia grzewcza239 m²225 m²
Parametry techniczne
Moc użyteczna29.9 kW30 kW
Zasilanie230 V230 V
Pobór mocy140 W87 W
Min. temp. czynnika grzewczego40 °С40 °С
Maks. temp. czynnika grzewczego80 °С76 °С
Maks. ciśnienie w obiegu grzewczym3 bar3 bar
Maks. ciśnienie w obiegu CWU10 bar10 bar
Pozostałe parametry
Min. temp. ciepłej wody35 °С30 °С
Maks. temp. ciepłej wody57 °С57 °С
Wydajność (Δt=25 °C)11.5 l/min
Letni tryb pracy
Pompa obiegowa
Protokół komunikacyjnyOpenTherm
Programator
Parametry techniczne kotła
Sprawność91 %90 %
Komora spalaniazamkniętaotwarta
Średnica komina60/100 mm60 mm
Nominalne ciśnienie wlotowe gazu20 mbar
Maks. zużycie gazu3.47 m³/h3.53 m³/h
Pojemność zbiornika wyrównawczego6 l10 l
Ciśnienie w zbiorniku wyrównawczym1 bar0.8 bar
Wymiennik ciepłastal nierdzewna
Przyłącza
Wlot zimnej wody1/2"1/2"
Wyjście CWU1/2"1/2"
Podłączenie gazu3/4"3/4"
Podłączenie zasilania c.o.3/4"3/4"
Podłączenie powrotu c.o.3/4"3/4"
Bezpieczeństwo
Zabezpieczenia
przed spadkiem ciśnienia gazu
przed przegrzaniem wody
przed zgaśnięciem płomienia
przed brakiem ciągu
 
 
 
przed zgaśnięciem płomienia
 
przed zanikiem prądu
Dane ogólne
Wymiary (WxSxG)725x450x360 mm725x450x360 mm
Waga39 kg31 kg
Data dodania do E-Katalogsierpień 2017sierpień 2010

Powierzchnia grzewcza

Maksymalna powierzchnia pomieszczenia, którą kocioł może wydajnie ogrzać. Warto jednak wziąć pod uwagę, że różne budynki mają różne właściwości termoizolacyjne, a nowoczesne budynki są znacznie „cieplejsze” niż domy 30-letnie, a tym bardziej 50-letnie. W związku z tym, punkt ten ma raczej charakter referencyjny i nie pozwala na pełną ocenę rzeczywistego ogrzewanego obszaru. Istnieje wzór, za pomocą którego można wywnioskować maksymalną powierzchnię grzewczą, znając moc użyteczną kotła i warunki klimatyczne, w których będzie on używany; zobacz "Moc użyteczna", aby uzyskać szczegółowe informacje. W naszym przypadku powierzchnia grzewcza liczona jest według wzoru „moc kotła pomnożona przez 8”, co w przybliżeniu jest równoznaczne wykorzystaniu w kilkunastoletnich domach.

Moc użyteczna

Użyteczna moc kotła to moc grzewcza, jaką zapewnia on w trybie maksymalnym.

Zdolność urządzenia do ogrzewania pomieszczenia o określonej powierzchni zależy bezpośrednio od tego parametru; przez moc można w przybliżeniu określić obszar ogrzewania, jeśli parametr ten nie jest wskazany w charakterystyce. Najbardziej ogólna zasada jest taka, że w przypadku pomieszczenia mieszkalnego o wysokości sufitu 2,5 - 3 m do ogrzania 1 m2 powierzchni potrzeba co najmniej 100 W mocy cieplnej. Istnieją również bardziej szczegółowe metody obliczeniowe, które uwzględniają określone czynniki: strefę klimatyczną, przepływ ciepła na zewnątrz, cechy konstrukcyjne systemu grzewczego itp.; są one szczegółowo opisane w specjalnych źródłach. Zwracamy również uwagę, że w kotłach dwufunkcyjnych (patrz „Rodzaj”) część wytworzonego ciepła jest przekazywana na ogrzewanie celem zaopatrzenia w ciepłą wodę; należy to wziąć pod uwagę przy ocenie mocy użytecznej.

Uważa się, że kotły o mocy powyżej 30 kW należy instalować w oddzielnych pomieszczeniach (kotłowniach).

Pobór mocy

Maksymalna moc elektryczna pobierana przez kocioł podczas pracy. W przypadku modeli nieelektrycznych (patrz „Źródło zasilania”) moc ta jest zwykle niska, jest ona potrzebna głównie dla obwodów sterujących i nie można na nią zwracać szczególnej uwagi. W przypadku kotłów elektrycznych warto zauważyć, że pobór mocy w nich jest najczęściej nieco wyższy od mocy użytecznej, ponieważ część energii jest nieuchronnie rozpraszana i nie jest wykorzystywana do ogrzewania. W związku z tym, zgodnie ze stosunkiem mocy użytecznej do zużytej, można oszacować sprawność takiego kotła.

Maks. temp. czynnika grzewczego

Maksymalna temperatura robocza chłodziwa w układzie kotła podczas pracy w trybie grzania.

Min. temp. ciepłej wody

Minimalna temperatura ciepłej wody dostarczanej przez dwufunkcyjny kocioł w trybie zaopatrzenia w ciepłą wodę (CWU). Dla porównania należy zauważyć, że woda zaczyna być postrzegana jako ciepła, zaczynając od 40 °C, a w scentralizowanych systemach zaopatrzenia w ciepłą wodę temperatura ciepłej wody wynosi zwykle około 60 °C (i nie powinna przekraczać 75 °C). Jednocześnie w niektórych kotłach minimalna temperatura grzania może wynosić nawet 10 °C, a nawet 5 °C. Podobny tryb pracy służy do ochrony rur przed zamarzaniem w zimnych porach roku: cyrkulacja wody o dodatniej temperaturze zapobiega tworzeniu się lodu wewnątrz i uszkodzeniu obwodów.

Należy również pamiętać, że po podgrzaniu do danej temperatury różnica temperatur („Δt”) może być różna – w zależności od początkowej temperatury zimnej wody. A wydajność kotła w trybie CWU zależy bezpośrednio od Δt; patrz poniżej, aby uzyskać szczegółowe informacje na temat wydajności.

Wydajność (Δt=25 °C)

Wydajność kotła dwufunkcyjnego w trybie zaopatrzenia w ciepłą wodę przy nagrzaniu wody o około 25 °C powyżej temperatury początkowej.

Wydajność to maksymalna ilość gorącej wody, jaką urządzenie może wytworzyć w ciągu minuty. Zależy ona nie tylko od mocy samego podgrzewacza, lecz także od tego, ile wody należy ogrzać: im wyższa różnica temperatur (Δt - „delta te”) między wodą zimną a ogrzaną, tym więcej energii jest potrzebne do ogrzania i tym mniejsza ilość wody, jaką kocioł może obsłużyć w tym trybie. Dlatego wydajność kotłów dwufunkcyjnych koniecznie wskazywana jest dla konkretnych wariantów Δt - mianowicie 25 °C, 30 °C i / lub 50 °C. Warto wybierać według tego wskaźnika, biorąc pod uwagę początkową temperaturę wody a także jakie jest zapotrzebowanie na ciepłą wodę w miejscu instalacji kotła (ile punktów poboru, jakie wymagania temperaturowe itp.); szczegółowe zalecenia na ten temat można znaleźć w dedykowanych źródłach.

Przypominamy, że woda zaczyna być odczuwana przez człowieka jako ciepła od około 40 °C, jako gorąca - od około 50 °C, a temperatura ciepłej wody w systemach centralnego zaopatrzenia (zgodnie z oficjalnymi normami) wynosi co najmniej 60 °C. Tak więc, aby kocioł pracował w trybie Δt ~25 °C i wytwarzał co najmniej ciepłą wodę o temperaturze 40 °C, początkowa temperatura wody zimnej powinna wynosić około 15 °C (15+25=40 °C). Jest to dość wysoka wartość - na przykład w centralnym systemie zaopatrzenia w wodę zimna woda osiąga 15 °C tylko...latem, gdy rury wodne wyraźnie się nagrzewają; to samo dotyczy wody dostarczanej ze studni. Tak więc, taka wydajność jest wartością bardzo umowną, w praktyce kocioł nieczęsto pracuje przy różnicy temperatur 25 °C. Niemniej jednak dane dla Δt = 25 °C są nadal często podawane w charakterystyce - w tym w celach reklamowych, gdyż w tym trybie cyfry dotyczące wydajności są najwyższe. Dodatkowo informacja ta może być przydatna, jeśli kocioł pełni funkcję wstępnego podgrzewacza wody, a dogrzewanie do temperatury roboczej zapewnia inne urządzenie - np. kocioł elektryczny lub przepływowy podgrzewacz wody.

Protokół komunikacyjny

Magistrala komunikacyjna, z którą kocioł jest kompatybilny.

Magistrala jest kanałem komunikacyjnym, za pośrednictwem którego urządzenia sterujące i sterowane mogą wymieniać dane. Obsługa takiego kanału znacznie upraszcza podłączenie termostatów i innej automatyki sterującej - wystarczy, że takie urządzenia są kompatybilne z tą samą magistralą co kocioł. Ponadto wiele rodzajów magistrali komunikacyjnych pozwala tworzyć bardzo rozbudowane systemy monitoringu i sterowania oraz łatwo integrować w nie różne urządzenia, w tym kotły grzewcze.

W nowoczesnym sprzęcie grzewczym najpopularniejsze magistrale to OpenTherm, eBus, Bus BridgeNet i EMS. Oto ich kluczowe cechy:

- OpenTherm. Dość prosty standard o skromnej funkcjonalności: pozwala tylko na bezpośrednie połączenie sterującego i sterowanego urządzenia, nie jest przeznaczony do tworzenia rozbudowanych systemów. Z drugiej strony, taka magistrala ma dość zaawansowane możliwości sterowania urządzeniami grzewczymi: w szczególności pozwala regulować temperaturę nie tylko poprzez włączanie/wyłączanie kotła, lecz także poprzez zmianę mocy palnika gazowego. Ten tryb pracy pomaga oszczędzać paliwo/energię, a także zmniejszać zużycie i wydłużać żywotność nagrzewnicy; a w wielu przypadkach do sprawnego sterowania ogrzewaniem wystarcza system dwóch urządzeń (kotła i termostat...u). Jednocześnie standard OpenTherm jest prosty i tani w realizacji, co czyni go niezwykle popularnym w nowoczesnych kotłach. Z wielu powodów stosuje się go głównie w modelach gazowych.

- e-Bus. Magistrala komunikacyjna o imponujących możliwościach praktycznych. Pozwala na zjednoczenie w jednym systemie do 25 urządzeń sterujących i 228 sterowanych, z odległością transmisji danych pomiędzy poszczególnymi elementami do 1 km. Jednocześnie eBUS jest standardem otwartym, jego wdrożenie (przynajmniej w zakresie podstawowych funkcji) jest dostępne bezpłatnie dla każdego. I choć obecnie obsługę eBUS można spotkać głównie w urządzeniach Protherm i Vaillant, to generalnie w kotłach jest to drugi, po OpenTherm, najpopularniejszy typ magistrali komunikacyjnej. Takie odstawanie wynika głównie z nieco wyższego kosztu, podczas gdy zaawansowane możliwości eBUS nie są tak często potrzebne.

- Bus BridgeNet. Autorskie opracowanie Hotpoint-Ariston, stosowane wyłącznie w kotłach tej marki. Jedną z zalet jest wysoki stopień automatyzacji: użytkownik musi tylko ustawić parametry temperatury (a dla różnych stref można wybrać własne opcje) oraz, w razie potrzeby, program na tydzień, resztę niezbędnych obliczeń i korekty zostaną przeprowadzone przez system. Jednak takie możliwości są dostępne tylko w specjalnych urządzeniach sterujących, takich jak termostaty; w kotłach, obsługa Bus BridgeNet oznacza zazwyczaj tylko kompatybilność z podobną automatyką.

- EMS. Magistrala komunikacyjna stosowana głównie w urządzeniach Bosch i Buderus. Generalnie cechuje się szeroką funkcjonalnością, wysokim stopniem automatyzacji oraz możliwością tworzenia rozbudowanych systemów sterowania. Należy jednak pamiętać, że w dzisiejszych czasach można spotkać zarówno oryginalny EMS, jak i zmodyfikowany EMS Plus, a standardy te początkowo nie są ze sobą kompatybilne (choć wsparcie dla obu z nich może być zapewnione w poszczególnych urządzeniach). Tak więc, konkretna wersja magistrali EMS powinna być określona osobno; należy zauważyć, że w sprzęcie Bosch występuje głównie wersja oryginalna, a w urządzeniach Buderus - EMS Plus (chociaż możliwe są wyjątki tam i tam).

Programator

Obecność programatora w konstrukcji kotła.

Programator nazywany jest programowalnym termostatem - urządzenie, które pozwala nie tylko utrzymać temperaturę, lecz także zaprogramować pracę kotła na określony czas. Najprostsze programatory obejmują cały dzień, bardziej zaawansowane pozwalają ustawić tryb pracy na poszczególne dni. W każdym razie funkcja ta zapewnia dodatkową wygodę i eliminuje konieczność ciągłej ręcznej regulacji pracy kotła. Z drugiej strony obecność programatora wpływa na koszt.

Sprawność

Sprawność kotła jest głównym wskaźnikiem charakteryzującym sprawność jego pracy.

W przypadku modeli elektrycznych (patrz „Źródło energii”) wskaźnik ten jest obliczany jako stosunek mocy użytecznej do zużytej; w takich modelach wskaźniki 98 - 99% nie są rzadkością. W przypadku kotłów na paliwo stałe, sprawność to stosunek ilości ciepła bezpośrednio przekazywanego do nośnika ciepła do całkowitej ilości ciepła uwalnianego podczas spalania. W takich urządzeniach sprawność jest niższa niż w urządzeniach elektrycznych; dla nich wskaźnik powyżej 90% jest uważany za dobry. Wyjątkiem są kotły kondensacyjne (patrz odpowiedni punkt), w których sprawność może być nawet wyższa niż 100%. Nie dochodzi tutaj do naruszenia praw fizyki, jest to rodzaj sztuczki reklamowej: przy obliczaniu wydajności stosuje się niewłaściwą metodę, która nie uwzględnia energii zużytej na tworzenie pary wodnej. Niemniej jednak formalnie wszystko jest poprawne: kocioł oddaje do nośnika ciepła więcej energii cieplnej niż jest uwalniane podczas spalania paliwa, ponieważ energia kondensacji jest dodawana do energii spalania.
Viessmann Vitopend 100-W A1JB 30 kW często porównują