Polska
Katalog   /   Komputery   /   Podzespoły   /   Procesory

Porównanie AMD Ryzen 5 Picasso 3400G BOX vs AMD Ryzen 5 Pinnacle Ridge 2600X BOX

Dodaj do porównania
AMD Ryzen 5 Picasso 3400G BOX
AMD Ryzen 5 Pinnacle Ridge 2600X BOX
AMD Ryzen 5 Picasso 3400G BOXAMD Ryzen 5 Pinnacle Ridge 2600X BOX
Porównaj ceny 15Porównaj ceny 1
Opinie
0
0
127
TOP sprzedawcy
Główne
Częstotliwość pracy GPU 1400 MHz.
12 strumieni. Kompatybilny ze starszymi chipsetami AM4 po aktualizacji BIOS-u. Nie ma wbudowanego rdzenia wideo. W zestawie z chłodnicą AMD Wraith Spire.
SeriaRyzen 5Ryzen 5
Nazwa kodowaPicasso (Zen+)Pinnacle Ridge (Zen+)
Złącze (Socket)AMD AM4AMD AM4
Proces technologiczny12 nm12 nm
Wersja opakowaniaBOX (z wentylatorem)BOX (z wentylatorem)
Rdzenie i wątki
Liczba rdzeni4 rdzenie6 rdzenie
Liczba wątków8 threads12 threads
Wielowątkowość
Częstotliwość
Częstotliwość taktowania3.7 GHz3.6 GHz
Częstotliwość TurboBoost / TurboCore4.2 GHz4.2 GHz
Pojemność pamięci podręcznej
Pamięć podręczna L1384 KB576 KB
Pamięć podręczna L22048 KB3072 KB
Pamięć podręczna L34 MB16 MB
Specyfikacja
Model zintegrowanego układu graficznegoRadeon Vega 11brak
Wydzielanie ciepła (TDP)65 W95 W
Obsługa instrukcji
MMX, SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1, SSE4.2, AES, AVX, AVX2 /BMI, BMI1, BMI2, SHA, F16C, FMA3, AMD64, EVP, AMD-V, SMAP, SMEP/
MMX+, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, SSE4A, AMD-V, AES, AVX /AVX2, FMA3, SHA/
Mnożnik3736
Zmienny mnożnik
Obsługa PCI Express3.03.0
Maks. temperatura robocza95 °C95 °C
Test PassMark CPU Mark9414 punkty(ów)14371 punkty(ów)
Test Geekbench 415896 punkty(ów)23337 punkty(ów)
Test Cinebench R151387 punkty(ów)
Obsługa pamięci
Maks. obsługiwana pojemność pamięci RAM64 GB
Maks. częstotliwość DDR42933 MHz2933 MHz
Liczba kanałów2 szt.2 szt.
Data dodania do E-Katalogczerwiec 2019kwiecień 2018

Nazwa kodowa

Parametr ten charakteryzuje, po pierwsze, proces technologiczny, a po drugie niektóre cechy wewnętrznej budowy procesorów. Nowa nazwa kodowa jest wprowadzana na rynek z każdą nową generacją procesorów; chipy tej samej architekturze są „rówieśnikami”, lecz mogą należeć do różnych serii (patrz wyżej). W takim przypadku jedna generacja może zawierać jedną lub kilka nazw kodowych.

Oto najpopularniejsze obecnie nazwy kodowe Intela: Cascade Lake-X (10. generacja), Comet Lake (10. generacja), Comet Lake Refresh (10. generacja), Rocket Lake< /a> (11. generacja), Alder Lake (12. generacja), Raptor Lake (13. generacja), Raptor Lake Refresh (14. generacja).

W przypadku AMD są to: Zen+ Picasso, Zen2 Matisse, Zen2 Renoir, Zen3 Vermeer, Zen3 Cezanne, Zen4 Raphael i Zen4 Phoenix.

Liczba rdzeni

Liczba fizycznych rdzeni przewidziana w konstrukcji procesora. Rdzeń to część procesora odpowiedzialna za wykonanie strumienia instrukcji. Obecność kilku rdzeni pozwala procesorowi na jednoczesną pracę z kilkoma zadaniami, co ma pozytywny wpływ na wydajność. Początkowo każdy rdzeń fizyczny miał wykonywać jeden strumień instrukcji, a liczba strumieni odpowiadała liczbie rdzeni. Jednak obecnie istnieje sporo procesorów, które obsługują technologie wielowątkowości i są w stanie wykonywać dwa strumienie instrukcji jednocześnie na każdym rdzeniu. Patrz „Liczba wątków”, aby uzyskać więcej informacji.

W stacjonarnych procesorach 2 rdzenie (2 wątki) z reguły są typowe dla modeli budżetowych. 2 rdzenie (4 wątki) i 4 rdzenie są typowe dla niskobudżetowych modeli ze średniej półki cenowej. 4 rdzenie (8 wątków), 6 rdzeni, 6 rdzeni (12 wątków), 8 rdzeni to średnia półka cenowa. 8 rdzeni (16 wątków), 10 rdzeni, 12 rdzeni, 16 rdzeni i więcej to oznaki zaawansowanych modeli, w tym procesorów do serwerów i stacji roboczych.

Należy wziąć pod uwagę, że o rzeczywistych możliwoś...ciach procesora decyduje nie tylko dany parametr, ale także inne parametry – przede wszystkim seria i generacja/architektura (patrz odpowiednie punkty). Nierzadko zdarza się, że bardziej zaawansowany i/lub nowy dwurdzeniowy procesor jest mocniejszy niż czterordzeniowy układ starszej serii lub architektury. Dlatego sensowne jest porównywanie procesorów według liczby rdzeni w ramach tej samej serii i generacji.

Liczba wątków

Liczba wątków instrukcji, które procesor może wykonywać jednocześnie.

Pierwotnie każdy rdzeń fizyczny (patrz „Liczba rdzeni”) miał wykonywać jeden wątek instrukcji, a liczba wątków odpowiadała liczbie rdzeni. Jednak obecnie istnieje wiele procesorów obsługujących technologie wielowątkowe Hyper-Threading lub SMT (patrz poniżej) i zdolnych do wykonywania dwóch wątków jednocześnie na każdym rdzeniu. W takich modelach liczba wątków jest dwukrotnie większa niż liczba rdzeni - na przykład 8 wątków zostanie określonych w układzie czterordzeniowym.

Ogólnie rzecz biorąc, większa liczba wątków, przy wszystkich innych niezmiennie równych warunkach, ma pozytywny wpływ na szybkość i wydajność, ale zwiększa koszt procesora.

Częstotliwość taktowania

Liczba cykli zegara na sekundę, które procesor wytwarza w normalnym trybie pracy. Taktem nazywany jest oddzielny impuls elektryczny służący do przetwarzania danych i synchronizacji procesora z pozostałymi elementami systemu komputerowego. Różne operacje mogą wymagać zarówno ułamków zegara, jak i kilku cykli zegara, jednak w każdym przypadku częstotliwość taktowania jest jednym z głównych parametrów charakteryzujących wydajność i szybkość procesora - przy pozostałych warunkach równych, procesor o wyższej częstotliwości taktowania będzie działać szybciej i lepiej radzi sobie ze znacznymi obciążeniami. Jednocześnie należy pamiętać, że rzeczywistą wydajność chipa determinuje nie tylko częstotliwość zegara, ale także szereg innych cech - od serii i architektury (patrz odpowiednie punkty) po liczbę rdzeni i wsparcie dla specjalnych instrukcji. Dlatego sensowne jest porównywanie częstotliwości taktowania tylko z chipami o podobnej charakterystyce, należącymi do tej samej serii i generacji.

Pamięć podręczna L1

Rozmiar pamięci podręcznej poziomu 1 (L1) przewidziana w procesorze.

Pamięć podręczna — pośredni bufor pamięci, w którym podczas pracy procesora zapisywane są najczęściej używane dane z pamięci RAM. Przyspiesza to dostęp do nich i ma pozytywny wpływ na wydajność systemu. Im większa pamięć podręczna, tym więcej danych można w niej przechowywać w celu szybkiego dostępu i wyższej wydajności. Pamięć podręczna poziomu 1 ma najwyższą wydajność i najmniejszy rozmiar - do 128 KB. Jest integralną częścią każdego procesora.

Pamięć podręczna L2

Rozmiar pamięci podręcznej poziomu 2 (L2) przewidziana w procesorze.

Pamięć podręczna — pośredni bufor pamięci, w którym podczas pracy procesora zapisywane są najczęściej używane dane z pamięci RAM. Przyspiesza to dostęp do nich i pozytywnie wpływa na szybkość systemu. Im większa pojemność pamięci podręcznej — tym więcej danych może być w niej przechowywanych w celu szybkiego dostępu i wyższej wydajności. Objętość pamięci podręcznej L2 może wynosić do 12 MB, zdecydowana większość nowoczesnych procesorów ma taką pamięć podręczną.

Pamięć podręczna L3

Pojemność pamięci podręcznej poziomu 3 (L3), przewidziana w procesorze.

Pamięć podręczna — pośredni bufor pamięci, w którym podczas pracy procesora zapisywane są najczęściej używane dane z pamięci RAM. Przyspiesza to dostęp do nich i ma pozytywny wpływ na wydajność systemu. Im większa pamięć podręczna, tym więcej danych można w niej przechowywać w celu szybkiego dostępu i wyższej wydajności.

Model zintegrowanego układu graficznego

Model zintegrowanego rdzenia wideo zainstalowanego w procesorze. Patrz „Zintegrowana grafika”, aby uzyskać szczegółowe informacje na temat samego rdzenia. Znając nazwę modelu układu graficznego, możesz znaleźć jego szczegółowe cechy i ustalić wydajność procesora podczas pracy z wideo.

Jeśli chodzi o konkretne modele, procesory Intel wykorzystują grafikę HD, w szczególności 510, 530, 610, 630 i grafikę UHD z modelami 610, 630, 730, 750, 770. W układy od AMD wyposażane są następujące serie kart graficznych: href="/list/186/pr-51231/">Radeon Graphics, Radeon R5 series, Radeon R7 series i Radeon RX Vega.

Jednocześnie procesory bez rdzenia graficznego są odpowiednie do zakupu, jeśli planujesz składać komputer z kartą graficzną "od zera". W tym przypadku przepłacanie za procesor z rdzeniem graficznym nie ma sensu.

Wydzielanie ciepła (TDP)

Ilość ciepła wytwarzana przez procesor podczas pracy w trybie normalnym. Parametr ten określa wymagania stawiane układowi chłodzącemu niezbędnemu do normalnej pracy procesora, dlatego bywa nazywany TDP - Thermal Design Power, czyli dosłownie „moc układu termicznego (chłodzącego)”. Mówiąc najprościej, jeśli procesor ma wydzielanie ciepła 60 W, potrzebuje układu chłodzenia zdolnego do odprowadzenia przynajmniej takiej ilości ciepła. W związku z tym im niższa wartość TDP, tym mniejsze wymagania stawiane układowi chłodzenia. Niskie wartości TDP(do 50 W) są szczególnie krytyczne w przypadku komputerów PC, w których nie ma możliwości zainstalowania wydajnych systemów chłodzenia - w szczególności systemów w kompaktowych obudowach, w których potężna chłodnica po prostu nie może się zmieścić.
Dynamika cen
AMD Ryzen 5 Picasso często porównują
AMD Ryzen 5 Pinnacle Ridge często porównują