Tryb nocny
Polska
Katalog   /   Komputery   /   Komputery stacjonarne

Porównanie ETE Saphir PC Saphir Warfare vs Vinga Hawk A20 Hawk A2025

Dodaj do porównania
ETE Saphir PC (Saphir Warfare)
Vinga Hawk A20 (Hawk A2025)
ETE Saphir PC Saphir WarfareVinga Hawk A20 Hawk A2025
od 4 456 zł
Produkt jest niedostępny
od 5 330 zł
Produkt jest niedostępny
TOP sprzedawcy
Rodzajgamingowygamingowy
Format obudowyMidi TowerMidi Tower
Procesor
ChipsetIntel H310Intel H310
Rodzajdesktopowydesktopowy
SeriaCore i5Core i5
Model9400F9400F
Liczba rdzeni66
Liczba wątków66
Częstotliwość taktowania2.9 GHz2.9 GHz
Częstotliwość TurboBoost / TurboCore4.1 GHz4.1 GHz
Pamięć RAM
Pojemność pamięci RAM16 GB16 GB
Rodzaj pamięciDDR4DDR4
Częstotliwość taktowania2666 MHz2666 MHz
Liczba banków2
Maksymalna obsługiwana pojemność32 GB
Karta graficzna
Rodzaj karty graficznejdedykowanadedykowana
Model karty graficznejGeForce GTX 1660GeForce RTX 2060
Pojemność pamięci VRAM6 GB6 GB
Rodzaj pamięciGDDR5GDDR6
Obsługa VR
Test 3DMark7553 punkty(ów)
Test Passmark G3D Mark14173 punkty(ów)
Dysk
Rodzaj dyskuHDD+SSDHDD+SSD
Pojemność dysku1000 GB1000 GB
Pojemność drugiego dysku240 GB240 GB
Tylny panel
Złącza
 
 
wyjście HDMI
DisplayPort
PS/21 szt.
USB 2.04 szt.
USB 3.2 gen12 szt.
Przedni panel
Napędbrakbrak
USB 2.02 szt.
USB 3.2 gen11 szt.
Multimedia
LAN (RJ-45)1 Gb/s1 Gb/s
Wi-Fibrakbrak
Dźwięk7.17.1
Układ audioRealtek ALC887
Dane ogólne
Rodzaj podświetleniawentylator / obudowa RGBwentylator RGB
Moc zasilacza500 W600 W
Preinstalowany system operacyjnybez systemu operacyjnegobez systemu operacyjnego
Materiał obudowystalstal
Wymiary (WxSxG)410x180x385 mm
Kolor obudowy
Data dodania do E-Katalogstyczeń 2020grudzień 2019

Liczba banków

Liczba gniazd na moduły pamięci RAM na płycie głównej komputera. W tym przypadku mówimy o gniazdach na wyjmowane kości; w przypadku komputera z wbudowaną pamięcią parametr ten nie ma znaczenia.

Gniazda dostępne na płycie głównej mogą być zajęte, częściowo lub wcale (w modelach bez pamięci RAM). W każdym razie warto zwrócić uwagę na ich liczbę w przypadku, gdy początkowo zainstalowana ilość pamięci RAM Ci nie odpowiada (lub ostatecznie przestanie Ci odpowiadać) i planujesz uaktualnić system. Najmniejsza ilość znaleziona w komputerze z wymienną pamięcią to 1 gniazdo; jeśli jest zajęte, kość należy zmienić tylko podczas aktualizacji. Duża liczba gniazd pamięci RAM jest z konieczności sparowana, wynika to z wielu niuansów technicznych; najczęściej jest to liczba 2 lub 4, ale może być większa - do 16 w wydajnych stacjach roboczych.

Pamiętaj, że planując uaktualnienie, musisz wziąć pod uwagę nie tylko liczbę gniazd i rodzaj pamięci (patrz wyżej), ale także specyfikację płyty głównej. Wszystkie nowoczesne płyty główne mają ograniczenia dotyczące maksymalnej ilości pamięci RAM; w efekcie np. obecność dwóch gniazd DDR4 nie oznacza, że w systemie można zainstalować jednocześnie dwie kości o maksymalnej pojemności, po 128 GB każda.

Maksymalna obsługiwana pojemność

Maksymalna ilość pamięci RAM, którą można zainstalować na komputerze. Zależy w szczególności od rodzaju zastosowanych modułów pamięci, a także od liczby ich gniazd. Przede wszystkim warto zwrócić uwagę na parametr ten, jeśli komputer jest kupowany z myślą o aktualizacji pamięci RAM, a pojemność faktycznie zainstalowanej pamięci jest zauważalnie mniejsza niż maksymalna dostępna.

Tak więc maksymalna pojemność zainstalowanej pamięci zależy od liczby gniazd w komputerze i może wynosić od 16 GB (skromny komputer) do 64 GB i więcej. Najpopularniejsze na rynku są komputery z maksymalnie 32 GB pamięci.

Model karty graficznej

 

Rodzaj pamięci

Rodzaj pamięci graficznej używanej przez dedykowaną kartę graficzną (patrz „Typ karty graficznej”).

W większości tych adapterów instaluje się pamięć graficzną typu GDDR - rodzaj konwencjonalnej pamięci RAM DDR zoptymalizowanej do użytku z zadaniami graficznymi. Ta pamięć jest dostępna na rynku w kilku wersjach; ponadto istnieją inne odmiany. Oto bardziej szczegółowy opis różnych opcji:

- GDDR3. W swoim czasie był to dość powszechny typ pamięci graficznej; dziś jest jednak uważany za przestarzały i nie jest używany w nowych komputerach.

- GDDR5. Najpopularniejszy (stan na 2020 r.) typ pamięci graficznej GDDR. Zapewnia dobrą wydajność za rozsądną cenę, dlatego znajduje się w komputerach w różnych kategoriach cenowych.

- GDDR5X. Modyfikacja wspomnianej wyżej pamięci GDDR5, oferująca dwukrotnie większą przepustowość. W związku z tym wydajność takiej pamięci (przy tych samych objętościach) okazuje się zauważalnie wyższa; jednak takie moduły są drogie.

- GDDR6. Najnowszy ze standardów GDDR (stan na 2020 r.) - pierwsze karty graficzne oparte na tego typu pamięci zostały zaprezentowane w 2018 roku. Różni się od swojego bezpośredniego poprzednika - GDDR5X - zarówno zwiększoną przepustowością, jak i zmniejszonym napięciem roboczym, co zapewnia jednocześnie zwiększoną wydajność i mniejsze zużycie energii. Warto też zaznaczyć, że GDDR6 został opracowany z myślą o wykorzystaniu go w określonych zadaniach - takich jak VR czy praca z ro...zdzielczościami powyżej 4K UHD.

- HBM2. Oryginalny HBM jest rodzajem pamięci o dostępie swobodnym zaprojektowanym w celu maksymalizacji prędkości wymiany danych; HBM2 to druga wersja tej technologii, w której przepustowość została podwojona w stosunku do oryginalnego HBM. Taka pamięć zasadniczo różni się konstrukcją od DDR - w szczególności komórki pamięci są ułożone warstwami i umożliwiają jednoczesny dostęp. Dzięki temu prędkość HBM jest kilkakrotnie wyższa niż najszybszych wersji GDDR, co czyni tę technologię idealną do dużych obciążeń, takich jak przetwarzanie grafiki UltraHD i wirtualnej rzeczywistości. Jednocześnie częstotliwość taktowania takich modułów jest niska, a zatem zużycie energii i wydzielanie ciepła są niskie. Wada tej opcji jest tradycyjna - wysoka cena.

- DDR3. Pamięć, która nie ma specjalizacji graficznej - innymi słowy, ta sama pamięć DDR3, która jest używana w kościach RAM (patrz „Typ pamięci” powyżej). W przypadku kart graficznych takie rozwiązania są całkowicie przestarzałe i prawie nigdy nie są stosowane w naszych czasach.

Test 3DMark

Wynik pokazany przez kartę graficzną komputera w teście (benchmarku) 3DMark.

3DMark to specjalistyczny test przeznaczony przede wszystkim do testowania wydajności i stabilności karty graficznej w wymagających grach. Weryfikacja odbywa się poprzez uruchamianie filmów 3D stworzonych na różnych silnikach gier przy użyciu różnych technologii. Ostateczny wynik jest oceniany zarówno z uwzględnieniem liczby klatek na sekundę, jak i punktów warunkowych; w tym punkcie podana jest tylko liczba punktów. Im jest wyższa, tym mocniejsza i wydajniejsza jest karta graficzna.

Zwróć uwagę, że testowanie 3DMark można przeprowadzić dla dowolnego typu grafiki (patrz „Typ karty graficznej”). Jednocześnie (stan na 2020 r.) w rozwiązaniach zintegrowanych wynik końcowy rzadko przekracza 1 000 punktów; najniższa ocena dla adapterów dedykowanych wynosi około 1 700 punktów; a w niektórych kartach graficznych wysokiej klasy może przekroczyć 10 000 punktów.

Test Passmark G3D Mark

Wynik pokazany przez kartę graficzną komputera w teście Passmark G3D Mark.

Passmark G3D Mark to kompleksowy test porównawczy do sprawdzania wydajności karty graficznej w różnych trybach. Tradycyjnie dla takich testów wyniki wyświetlane są w punktach, większa liczba punktów oznacza (proporcjonalnie) większą moc obliczeniową. Należy jednak pamiętać, że karta graficzna jest testowana w różnych trybach, a ostateczny wynik jest wyświetlany na podstawie kilku wyników w specjalistycznych testach. Dlatego adaptery o podobnym ogólnym wyniku mogą nieznacznie różnić się rzeczywistą wydajnością w niektórych określonych formatach pracy. Jeśli więc komputer stacjonarny kupowany jest do profesjonalnej pracy graficznej, a wysoka wydajność w niektórych specjalistycznych zadaniach jest krytyczna - te szczegóły warto wyjaśnić osobno.

Zwróć uwagę, że obecnie przy pomocy Passmark G3D Mark są testowane wszystkie typy kart graficznych (zobacz „Typ karty graficznej”). Jednocześnie dla rozwiązań zintegrowanych wynik powyżej 1 200 punktów jest uważany za bardzo dobry, a w modelach dedykowanych wskaźnik ten może wahać się od 2 200 - 2 300 punktów do 20 000 lub więcej.

Złącza

W większości komputerów stacjonarnych asortyment ten obejmuje zarówno złącza na płycie głównej, jak i dedykowanej karcie graficznej, wśród których są VGA, DVI, wyjście HDMI (istnieją modele, w których HDMI 2 szt.), wejście HDMI, DisplayPort, miniDisplayPort. Więcej szczegółów na ich temat.

- VGA. Inaczej nazywa się D-Sub. Analogowe wyjście wideo o maksymalnej rozdzielczości do 1280x1024 bez obsługi dźwięku. Rzadko jest instalowane w nowoczesnych urządzeniach, jednak może być przydatne do podłączenia niektórych modeli projektorów i telewizorów, a także przestarzałego sprzętu wideo.

- DVI. Nowoczesne komputery stacjonarne mogą być wyposażone zarówno w czysto cyfrowe złącze DVI-D, jak i hybrydowe DVI-I; to ostatnie umożliwia również połączenie analogowe, w tym współpracę z urządzeniami VGA przez adapter, a w formacie analogowym ma rozdzielczość 1280x1024. W cyfrowym DVI parametr ten może osiągnąć 1920x1200 w trybie pojedynczego kanału (single link) i 2560x1600 w trybie podwójnego kanału (dual link). Dostępność trybu dwukanałowego należy wyjaśnić osobno.

- Wyjście HDMI. Wyjście cyfrowe pierwotnie przeznaczone dla treści HD — wideo o wysokiej rozdzielczości i wielokanałowego dźwięku. Interfejs HDMI jest niemal obowiązko...wy w nowoczesnym sprzęcie multimedialnym z obsługą HD, jest też niezwykle popularny w monitorach komputerowych - więc dostępność takiego wyjścia w komputerze stacjonarnym daje bardzo szerokie możliwości podłączenia zewnętrznych ekranów, a nawet wysokiej klasy urządzeń audio. Niektóre urządzenia mogą mieć nawet 2 wyjścia HDMI.

- Wejście HDMI. Dostępność co najmniej jednego wejścia HDMI w komputerze. Aby uzyskać szczegółowe informacje na temat samego interfejsu, patrz powyżej; tutaj zauważamy, że to wejścia tego formatu znajdują się głównie w komputerach All-In-One (patrz „Rodzaj”). Pozwala to przynajmniej na użycie własnego ekranu komputera All-In-One jako ekranu dla innego urządzenia (na przykład jako zewnętrznego monitora laptopa). Możliwe są również inne, bardziej szczegółowe opcje korzystania z wejścia HDMI - na przykład nagrywanie przychodzącego sygnału wideo lub przesyłanie go (przełączanie) do jednego z wyjść wideo komputera.
Zarówno wejścia, jak i wyjścia HDMI we współczesnych komputerach mogą odpowiadać różnym wersjom:
  • v 1.4. Najwcześniejszy standard w powszechnym użyciu. Obsługuje rozdzielczości do 4096x2160 i częstotliwość odświeżania do 120 kl./s (choć tylko w rozdzielczości 1920x1080 lub niższej), może być również używany do przesyłania sygnałów wideo 3D. Oprócz oryginalnej wersji 1.4, można znaleźć ulepszone v 1.4a i v 1.4b - w obu przypadkach usprawnienia wpłynęły głównie na pracę z 3D.
  • v 2.0. Standard, znany również jako HDMI UHD, jako pierwszy zapewnił pełną obsługę UltraHD 4K, częstotliwość odświeżania do 60 kl./s, a także kompatybilność z proporcjami klatki 21:9. Ponadto liczba jednocześnie transmitowanych kanałów i strumieni audio wzrosła odpowiednio do 32 i 4. Warto również zauważyć, że początkowo wersja 2.0 nie zapewniała obsługi HDR, jednak pojawiła się ona w aktualizacji v 2.0a; jeśli funkcja ta jest dla Ciebie ważna, warto wyjaśnić, która wersja 2.0 jest dostępna na komputerze, oryginalna lub zaktualizowana.
  • v 2.0b. Druga aktualizacja opisanej powyższej v 2.0. Główną aktualizacją było rozszerzenie możliwości HDR, w szczególności obsługa dwóch nowych formatów.
  • v 2.1. Nazywana również HDMI Ultra High Speed: przepustowość została zwiększona do tego stopnia, że możliwe stało się przesyłanie wideo 10K z prędkością 120 kl./s (nie wspominając o skromniejszych rozdzielczościach) oraz praca z rozbudowanymi schematami kolorów do 16 bitów. To ostatnie może być przydatne do niektórych zadań zawodowych. Należy jednak pamiętać, że wszystkie funkcje HDMI v 2.1 są dostępne tylko przy użyciu kabli zaprojektowanych dla tego standardu.
- DisplayPort. Cyfrowy interfejs multimedialny, pod wieloma względami podobny do HDMI, jednak wykorzystywany głównie w sprzęcie komputerowym – w szczególności jest szeroko stosowany w komputerach i monitorach Apple. Jedną z ciekawych cech tego standardu jest możliwość pracy w formacie daisy chain – szeregowe podłączenie kilku ekranów do jednego portu, z transmisją własnego sygnału do każdego z nich (chociaż funkcja ta nie jest technicznie dostępna we wszystkich ekranach dla tego interfejsu). DisplayPort jest również dostępny na rynku w kilku wersjach, które są obecnie aktualne:
  • v 1.2. Najwcześniejsza powszechnie używana wersja (2010 r.). Jednak już w tej wersji pojawiła się kompatybilność 3D i tryb daisy chain. Maksymalna w pełni obsługiwana rozdzielczość przy podłączeniu jednego monitora to 5K (30 kl./s), z pewnymi ograniczeniami możliwa jest transmisja do 8K; częstotliwość odświeżania 60 Hz jest obsługiwana do rozdzielczości 3840x2160, a 120 Hz - do 2560x1600. Korzystając z połączenia szeregowego, można jednocześnie podłączyć do 2 ekranów 2560x1600 przy 60 klatkach na sekundę lub do 4 ekranów 1920x1200. Oprócz oryginalnej wersji 1.2, istnieje ulepszona v 1.2a, której główną innowacją jest obsługa AMD FreeSync - technologii synchronizacji częstotliwości odświeżania monitora z sygnałem z karty graficznej AMD.
  • v 1.3. Aktualizacja wprowadzona w 2014 roku. Zwiększona przepustowość pozwoliła zapewnić już pełną, bez ograniczeń obsługę 8K przy 30 kl./s, a także przesyłać obrazy 4K przy 120 kl./s, wystarczających do pracy z 3D. Rozdzielczości w trybie daisy chain również wzrosły - do 4K (3840x2160) przy 60 kl./s dla dwóch ekranów i 2560x1600 przy tej samej częstotliwości odświeżania dla czterech. Z konkretnych innowacji warto wspomnieć o trybie Dual Mode, który umożliwia podłączenie urządzeń HDMI i DVI do takiego złącza poprzez najprostsze pasywne adaptery.
  • v 1.4. Najnowsza wersja szeroko stosowana w nowoczesnych komputerach stacjonarnych. Formalnie maksymalna prędkość połączenia nie wzrosła w porównaniu do poprzedniej wersji, jednak dzięki optymalizacji sygnału stała się możliwa praca z rozdzielczościami 4K i 5K przy 240 kl./s oraz z 8K - przy 120 kl./s. Co prawda, do tego podłączony ekran musi obsługiwać technologię kodowania DSC - w przeciwnym razie dostępne rozdzielczości nie będą się różnić od wskaźników wersji 1.3. Ponadto w wersji 1.4 dodano obsługę szeregu funkcji specjalnych, w tym HDR10, a maksymalna liczba jednocześnie przesyłanych kanałów audio wzrosła do 32.
- miniDisplayPort. Zmniejszona wersja pisanego powyżej złącza DisplayPort może również odpowiadać różnym wersjom (patrz wyżej). Zwróć uwagę, że to samo złącze sprzętowe jest używane w Thunderbolt w wersjach 1 i 2, a część graficzna tego interfejsu jest oparta na DisplayPort. Dlatego nawet niektóre monitory Thunderbolt można podłączyć bezpośrednio do miniDisplayPort (chociaż wskazane jest doprecyzowanie tej opcji osobno).

- COM (RS-232). Port szeregowy, pierwotnie używany do podłączania modemów telefonicznych i niektórych urządzeń peryferyjnych, w szczególności myszy. Jednak dziś ten interfejs jest używany jako interfejs serwisowy w różnych urządzeniach - telewizorach, projektorach, sprzęcie sieciowym (routerach i przełącznikach) itp. Połączenie z komputerem stacjonarnym przez RS-232 umożliwia sterowanie parametrami urządzenia zewnętrznego z poziomu komputera.

PS/2

Liczba złączy PS/2 znajdujących się z tyłu komputera.

PS/2 to wyspecjalizowane złącze o charakterystycznym okrągłym kształcie, używane wyłącznie do klawiatur i myszy. Ze względu na pojawienie się bardziej zaawansowanych interfejsów (USB 3.2, Thunderbolt itp.) jest uważane za przestarzałe, ale nadal występuje w niektórych modelach komputerów stacjonarnych. Wynika to w szczególności z faktu, że zastosowanie peryferiów PS/2 pozwala na zwolnienie bardziej zaawansowanych portów, które mogą być potrzebne dla bardziej wymagających urządzeń.

Jeśli chodzi o liczbę, to używa się maksymalnie dwóch złączy PS/2 - jedno do klawiatury, drugie do myszy. Istnieją konfiguracje z jednym takim gniazdem - w takich przypadkach zwykle jest ono kombinowane i umożliwia podłączenie obu typów urządzeń peryferyjnych do wyboru. Jednak te szczegóły warto wyjaśnić osobno.

USB 2.0

Liczba pełnowymiarowych złączy USB 2.0 znajdujących się z tyłu komputera.

USB to najpopularniejszy współczesnie interfejs do podłączania urządzeń peryferyjnych. A liczba złączy to odpowiednio liczba urządzeń, które można jednocześnie podłączyć do tylnego panelu bez użycia rozgałęźników. W szczególności wersja 2.0 była najpopularniejsza jakiś czas temu, ale teraz jest uważana za przestarzałą i stopniowo zastępują ją bardziej zaawansowane standardy, takie jak USB 3.0 (3.1 Gen1). Niemniej jednak możliwości USB 2.0 (prędkość przesyłania danych do 480 Mb/s) są nadal wystarczające dla wielu urządzeń peryferyjnych – od klawiatur i myszy po drukarki. Więc ten standard jest wciąż daleki od całkowitego zniknięcia, a niektóre komputery mogą mieć 4 lub nawet więcej portów USB 2.0 na tylnym panelu.

Należy osobno zauważyć, że podobne złącza można umieścić z przodu obudowy. Jednak w przypadku urządzeń peryferyjnych, które muszą być stale podłączone do komputera, wygodniej jest użyć tylnego panelu, podczas gdy przednie umiejscowienie lepiej nadaje się do częstego podłączania/odłączania.
ETE Saphir PC często porównują
Vinga Hawk A20 często porównują