Polska
Katalog   /   Komputery   /   Komputery stacjonarne

Porównanie Artline Gaming X26 X26v09 vs Berloga PC Field

Dodaj do porównania
Artline Gaming X26 (X26v09)
Berloga PC (Field)
Artline Gaming X26 X26v09Berloga PC Field
od 1 676 zł
Produkt jest niedostępny
od 1 856 zł
Produkt jest niedostępny
Opinie
0
0
0
3
TOP sprzedawcy
Rodzajgamingowygamingowy
Format obudowyMini TowerMidi Tower
Procesor
ChipsetAMD A320AMD A320
Rodzajdesktopowydesktopowy
SeriaRyzen 3Ryzen 3
Model12001200
Nazwa kodowaSummit Ridge (Zen)
Liczba rdzeni44
Liczba wątków44
Częstotliwość taktowania3.1 GHz3.1 GHz
Częstotliwość TurboBoost / TurboCore3.4 GHz3.4 GHz
Test Passmark CPU Mark6354 punkty(ów)
Test Geekbench 413774 punkty(ów)
Test Cinebench R15480 punkty(ów)
Pamięć RAM
Pojemność pamięci RAM8 GB8 GB
Rodzaj pamięciDDR4DDR4
Częstotliwość taktowania2666 MHz2666 MHz
Liczba banków22
Maksymalna obsługiwana pojemność32 GB32 GB
Karta graficzna
Rodzaj karty graficznejdedykowanadedykowana
Model karty graficznejGTX 1050 TiRadeon RX 470
Pojemność pamięci VRAM4 GB4 GB
Rodzaj pamięciGDDR5GDDR5
Test 3DMark2349 punkty(ów)
Test Passmark G3D Mark6405 punkty(ów)
Dysk
Rodzaj dyskuHDDHDD+SSD
Pojemność dysku1 TB512 GB
Pojemność drugiego dysku120 GB
NVMe
Złącze M.2
Tylny panel
Złącza
VGA
DVI
wyjście HDMI
DisplayPort
VGA
DVI
wyjście HDMI
DisplayPort
PS/22 szt.1 szt.
USB 2.02 szt.2 szt.
USB 3.2 gen14 szt.4 szt.
Przedni panel
Napędbrakbrak
mini-Jack (3,5 mm)
USB 2.02 szt.1 szt.
USB 3.2 gen11 szt.1 szt.
Multimedia
LAN (RJ-45)1 Gb/sbrak
Kontroler LANRealtek RTL8111H
Wi-Fibrakbrak
Dźwięk7.1
Układ audioRealtek ALC887
Dane ogólne
Rodzaj podświetleniawentylator RGBobudowa z podświetleniem
Kolor podświetleniaRGBRGB
Moc zasilacza400 W400 W
Preinstalowany system operacyjnybez systemu operacyjnegobez systemu operacyjnego
Materiał obudowystalstal
Wymiary (WxSxG)345x190x365 mm390x188x372 mm
Kolor obudowy
Data dodania do E-Kataloglistopad 2019październik 2019
Glosariusz

Format obudowy

Współczynnik kształtu obudowy komputera charakteryzuje przede wszystkim objętość wewnętrzną. Podstawowe współczynniki kształtu komputera stacjonarnego to:

- Midi Tower. Przedstawiciel rodziny tower (obudowy montowanej pionowo) średniej wielkości - około 45 cm wysokości i 15-20 cm szerokości, z liczbą zewnętrznych wnęk od 2 do 4. Najpopularniejsze dla domowych komputerów klasy średniej.

- Mini Tower. Najbardziej kompaktowy pionowy typ obudowy o szerokości 15-20 cm, ma wysokość około 35 cm i (zazwyczaj) nie więcej niż 2 wnęki z dostępem z zewnątrz. Jest używany głównie w komputerach biurowych, które nie wymagają wysokiej wydajności.

Full Tower. Pionowa obudowa jest obecnie jednym z największych współczynników kształtu do komputerów: szerokość wynosi 15-20 cm, wysokość 50-60 cm, liczba zatok z dostępem z zewnątrz może sięgać 10. Najczęściej w tym formacie produkowane są obudowy komputerów o wysokiej wydajności.

- Desktop. Obudowy przeznaczone do montażu bezpośrednio na biurku. Często mają możliwość montażu poziomego – dzięki czemu monitor można postawić na obudowie – choć zdarzają się też modele, które montuje się stricte pionowo. W każdym razie modele „desktopowe” są stosunkowo niewielkie.

- Cube Case. Obudowy sześcienne lub podobne. Mogą mieć różne rozmi...ary i są przeznaczone do różnych typów płyt głównych, ten punkt w każdym przypadku należy doprecyzować osobno. Tak czy inaczej, takie obudowy mają dość oryginalny wygląd, który różni się od tradycyjnych „wież” i „desktopów”.

Nazwa kodowa

Nazwa kodowa procesora, dołączonego do PC.

Parametr ten przede wszystkim charakteryzuje generację, do której należy procesor i zastosowaną w nim mikroarchitekturę. Jednocześnie do tej samej mikroarchitektury/generacji mogą należeć układy o różnych nazwach kodowych; w takich przypadkach różnią się one innymi parametrami - ogólnym pozycjonowaniem, przynależnością do określonej serii (patrz wyżej), obecnością/brakiem niektórych określonych funkcji itp.

Obecnie wśród procesorów Intela aktualne są układy o następujących nazwach kodowych: Coffee Lake (8. generacja), Coffee Lake (9. generacja), Comet Lake (10. generacja) Rocket Lake (11. generacja), Alder Lake (12. generacja), Raptor Lake (13. generacja), Raptor Lake-S (14. generacja). W przypadku AMD lista wygląda następująco: Zen+ Picasso (3. generacja), Zen2 Matisse (3. generacja), Zen2 Renoir (4. generacja), Zen 3 Cezanne (5. generacja), Zen 3 Vermeer (5. generacja), Zen 4 Raphael (6. generacja).

Test Passmark CPU Mark

Wynik pokazany przez procesor komputera w teście (benchmarku) Passmark CPU.

Passmark CPU Mark to kompleksowy test porównawczy, który pozwala ocenić wydajność procesora w różnych trybach i przy różnej liczbie przetwarzanych wątków. Wyniki są wyświetlane w punktach; im wyższy wynik, tym wyższa ogólna wydajność procesora. Dla porównania: w 2020 roku w rozwiązaniach niedrogich wyniki mierzone są w setkach punktów, w modelach ze średniej półki wahają się od 800 – 900 do ponad 6 000 punktów, a niektóre topowe układy są w stanie pokazać 40 000 punktów lub więcej.

Test Geekbench 4

Wynik pokazany przez procesor komputera w teście Geekbench 4.

Geekbench 4 to kompleksowy cross-platformowy benchmark, który pozwala między innymi określić wydajność procesora w różnych trybach. Jednocześnie, według twórców, tryby weryfikacji są jak najbardziej zbliżone do różnych rzeczywistych zadań, które procesor musi rozwiązać. Wynik jest wskazywany w punktach: im więcej punktów - tym mocniejszy procesor, podczas gdy różnica liczb odpowiada rzeczywistej różnicy w wydajności („dwukrotny wynik - dwukrotna moc”).

Zauważ, że benchmark w Geekbench 4 to procesor Intel Core i7-6600U o częstotliwości taktowania 2,6 GHz. Jego moc szacowana jest na 4 000 punktów, a wydajność innych testowanych procesorów jest już z nim porównywana.

Test Cinebench R15

Wynik pokazany przez procesor komputera w teście Cinebench R15.

Cinebench to test porównawczy przeznaczony do testowania możliwości procesora i karty graficznej. Twórca tego benchmarku, firma Maxon, jest również znana jako twórca edytora 3D Cinema 4D; to określiło cechy testowania. Tak więc, oprócz zadań czysto matematycznych, podczas korzystania z Cinebench R15 procesor jest obciążony przetwarzaniem wysokiej jakości grafiki 3D. Inną ciekawą funkcją jest rozbudowana obsługa wielowątkowości - test pozwala w pełni sprawdzić moc układów przetwarzających do 256 wątków jednocześnie.

Tradycyjnie w testach porównawczych procesorów wyniki testów są wskazywane w punktach (a dokładniej - PTS). Im więcej punktów uzyskał procesor, tym wyższa jego wydajność.

Model karty graficznej

 

Test 3DMark

Wynik pokazany przez kartę graficzną komputera w teście (benchmarku) 3DMark.

3DMark to specjalistyczny test przeznaczony przede wszystkim do testowania wydajności i stabilności karty graficznej w wymagających grach. Weryfikacja odbywa się poprzez uruchamianie filmów 3D stworzonych na różnych silnikach gier przy użyciu różnych technologii. Ostateczny wynik jest oceniany zarówno z uwzględnieniem liczby klatek na sekundę, jak i punktów warunkowych; w tym punkcie podana jest tylko liczba punktów. Im jest wyższa, tym mocniejsza i wydajniejsza jest karta graficzna.

Zwróć uwagę, że testowanie 3DMark można przeprowadzić dla dowolnego typu grafiki (patrz „Typ karty graficznej”). Jednocześnie (stan na 2020 r.) w rozwiązaniach zintegrowanych wynik końcowy rzadko przekracza 1 000 punktów; najniższa ocena dla adapterów dedykowanych wynosi około 1 700 punktów; a w niektórych kartach graficznych wysokiej klasy może przekroczyć 10 000 punktów.

Test Passmark G3D Mark

Wynik pokazany przez kartę graficzną komputera w teście Passmark G3D Mark.

Passmark G3D Mark to kompleksowy test porównawczy do sprawdzania wydajności karty graficznej w różnych trybach. Tradycyjnie dla takich testów wyniki wyświetlane są w punktach, większa liczba punktów oznacza (proporcjonalnie) większą moc obliczeniową. Należy jednak pamiętać, że karta graficzna jest testowana w różnych trybach, a ostateczny wynik jest wyświetlany na podstawie kilku wyników w specjalistycznych testach. Dlatego adaptery o podobnym ogólnym wyniku mogą nieznacznie różnić się rzeczywistą wydajnością w niektórych określonych formatach pracy. Jeśli więc komputer stacjonarny kupowany jest do profesjonalnej pracy graficznej, a wysoka wydajność w niektórych specjalistycznych zadaniach jest krytyczna - te szczegóły warto wyjaśnić osobno.

Zwróć uwagę, że obecnie przy pomocy Passmark G3D Mark są testowane wszystkie typy kart graficznych (zobacz „Typ karty graficznej”). Jednocześnie dla rozwiązań zintegrowanych wynik powyżej 1 200 punktów jest uważany za bardzo dobry, a w modelach dedykowanych wskaźnik ten może wahać się od 2 200 - 2 300 punktów do 20 000 lub więcej.

Rodzaj dysku

Rodzaj pamięci masowej, standardowo zainstalowanej w komputerze.

Zwróć uwagę, że wiele komputerów stacjonarnych pozwala uzupełnić pamięć masową z zestawu lub nawet całkowicie ją wymienić, jednak wygodniej jest początkowo kupić odpowiednią konfigurację i nie zawracać sobie głowy ponownym wyposażeniem. Pod względem typów, tradycyjne dyski twarde (HDD) w dzisiejszych czasach coraz częściej ustępują miejsca półprzewodnikowym modułom SSD. Ponadto dość popularne są kombinacje HDD+SSD (m.in. z wykorzystaniem zaawansowanych technologii Intel Optane i Fusion Drive) i nowości SSD+SSD. Natomiast rozwiązania takie jak SSHD i eMMC prawie wyszły z użytku. Rozpatrzmy te warianty bardziej szczegółowo:

- HDD. Klasyczny twardy dysk magnetyczny. Kluczową zaletą takich dysków jest ich niski koszt w przeliczeniu na jednostkę pojemności - pozwala to na tworzenie pojemnych i jednocześnie niedrogich pamięci masowych. Dyski HDD jednak są zauważalnie gorsze od dysków SSD pod względem szybkości działania, a także nie tolerują uderzeń i wstrząsów. W związku z tym tego typu dyski są coraz rzadziej używane w czystej postaci – znacznie częściej można spotkać kombinację dysku twardego z modułem SSD (patrz niżej).

- SSD. Napęd półprzewodnikowy zbudowany w oparciu o pamięć fl...ash. Przy tej samej pojemności dysk SSD jest znacznie droższy niż dysk HDD, jednak jest to uzasadnione wieloma zaletami. Po pierwsze, takie dyski są znacznie szybsze niż dyski twarde; konkretna wydajność może być różna (w zależności od rodzaju pamięci, interfejsu połączenia itp.), jednak nawet niedrogie dyski SSD przewyższają zaawansowane dyski HDD pod tym względem. Po drugie, pamięć półprzewodnikowa nie zawiera ruchomych części, co zapewnia jednocześnie kilka zalet: lekkość, kompaktowość, odporność na wstrząsy i niski pobór mocy. A koszt takiej pamięci stale spada wraz z postępem technologii. Dlatego coraz więcej nowoczesnych komputerów stacjonarnych jest wyposażonych właśnie w takie dyski i mogą to być konfiguracje na każdym poziomie – od niedrogich po topowe.

- HDD+SSD. Obecność w jednym systemie jednocześnie dwóch dysków - HDD i SSD. Każda z tych odmian została szczegółowo opisana powyżej; a ich połączenie w jednym systemie pozwala połączyć zalety i częściowo zrekompensować wady. Na przykład na dysku SSD (który zwykle jest o dość małej pojemności) można przechowywać pliki systemowe i inne dane, dla których ważna jest szybkość dostępu (na przykład aplikacje do pracy); a dysk HDD dobrze nadaje się do dużych ilości informacji, które nie wymagają szczególnie dużej szybkości (typowym przypadkiem są pliki wideo i inne treści multimedialne). Ponadto moduł półprzewodnikowy może być używany nie jako oddzielna pamięć masowa, jednak jako pośrednia pamięć podręczna w celu przyspieszenia dysku twardego; jednak zazwyczaj wymaga to specjalnych ustawień oprogramowania (podczas gdy tryb „dwóch oddzielnych dysków” jest najczęściej dostępny domyślnie).
Podkreślamy również, że w tym przypadku chodzi o „zwykłe” moduły SSD, które nie należą do serii Optane i Fusion Drive; cechy tych serii są szczegółowo opisane poniżej.

- HDD+Optane. Połączenie tradycyjnego dysku twardego z dyskiem SSD z serii Intel Optane. Aby uzyskać więcej informacji na temat ogólnych cech tej kombinacji, zobacz „HDD+SSD” powyżej. Tutaj zauważamy, że dyski Optane różnią się od innych dysków SSD specjalną trójwymiarową strukturą komórek pamięci (technologia 3D Xpoint). Pozwala to na dostęp do danych na poziomie pojedynczych komórek i bez dodatkowych operacji, co przyspiesza przetwarzanie i zmniejsza opóźnienia, a także pozytywnie wpływa na żywotność pamięci. Druga różnica polega na tym, że Optane jest zwykle używany nie jako odrębny dysk, jednak jako pomocniczy bufor (pamięć podręczna) dla głównego dysku twardego, mający na celu zwiększenie szybkości działania. W tym przypadku oba dyski są postrzegane przez system jako jedno urządzenie. Wadą tego typu dysków SSD jest tradycyjnie dość wysoka cena; warto również zauważyć, że jego wyższość jest najbardziej zauważalna przy stosunkowo niskich obciążeniach (choć nie zanika całkowicie wraz ze wzrostem obciążenia).

- HDD+Fusion Drive. Odmiana pakietu „HDD+SSD” (patrz wyżej), używana wyłącznie w komputerach Apple i zoptymalizowana pod kątem zastrzeżonego systemu operacyjnego macOS. Jednak bardziej słuszne byłoby porównanie tej opcji z kombinacją „HDD+Optane” (również opisaną powyżej): na przykład oba napędy są postrzegane przez system jako całość, a moduł Fusion Drive jest również używany jako szybka pamięć podręczna dysku twardego. Jednak są też znaczące różnice. Po pierwsze, Fusion Drive ma znaczną pojemność i jest używany nie tylko jako bufor usług, jednak także jako część pełnowartościowego dysku - do trwałego przechowywania danych. Po drugie, całkowita pojemność całego pakietu odpowiada w przybliżeniu sumie pojemności obu dysków (minus kilka gigabajtów „usługowych”). Ten rodzaj pamięci nie jest tani, jednak wydajność i wygoda są całkowicie warte swojej ceny.

- SSHD. Tak zwana pamięć hybrydowa: urządzenie, które łączy w jednej obudowie dysk twardy i małą pamięć podręczną SSD. Jakiś czas temu rozwiązanie to było dość popularne, jednak teraz prawie nigdy się nie pojawia, wypierając bardziej praktyczną opcję - różne typy HDD+SSD.

- eMMC. Rodzaj pamięci półprzewodnikowej pierwotnie opracowany dla przenośnych gadżetów, takich jak smartfony i tablety. Od SSD różni się, z jednej strony, niższym kosztem i niskim zużyciem energii, z drugiej zaś — stosunkowo niską szybkością i niezawodnością. Z tego powodu ten rodzaj pamięci jest używany niezwykle rzadko - w szczególności w pojedynczych modelach mikrokomputerów i cienkich klientów (patrz „Rodzaj”).

- HDD+eMMC. Połączenie dysku twardego (HDD) i modułu półprzewodnikowego eMMC. Te typy pamięci zostały szczegółowo opisane powyżej; tutaj zauważamy, że ta opcja jest niezwykle rzadka, używana w dość specyficznych urządzeniach - komputerach All-In-One (patrz „Rodzaj”) z funkcją urządzenia konwertowalnego, gdzie ekran jest zdejmowanym tabletem, z którego można korzystać autonomicznie. W takim tablecie zwykle instalowany jest moduł eMMC, a dysk twardy jest umieszczony w części stacjonarnej. Możliwa jest również inna opcja - pakiet podobny do HDD+SSD (patrz wyżej), gdzie eMMC służy do obniżenia kosztów i/lub zużycia energii.

- SSD+eMMC. Kolejna kombinacja dwóch typów pamięci opisanych powyżej. Stosowano go w pojedynczych komputerach All-In-One i nettopach - głównie w celu obniżenia kosztów; dziś ta opcja prawie nie jest używana.
Artline Gaming X26 często porównują
Berloga PC często porównują