Polska
Katalog   /   Komputery   /   Monitory

Porównanie Xiaomi Mi Surface Display 34 34 " czarny vs LG 34UC89G 34 " czarny

Dodaj do porównania
Xiaomi Mi Surface Display 34 34 "  czarny
LG 34UC89G 34 "  czarny
Xiaomi Mi Surface Display 34 34 " czarnyLG 34UC89G 34 " czarny
Porównaj ceny 2
od 5 106 zł
Produkt jest niedostępny
Opinie
TOP sprzedawcy
Główne
Monitor wykorzystuje 34-calowy panel VA firmy Samsung. Wyświetlacz Mi Surface jest mocowany do stojaka za pomocą zamka magnetycznego.
Częstotliwość odświeżania 144 Hz. Soczysty i bogaty obraz. Wąskie ramy. Wiele funkcji gry. Elastyczna regulacja pozycji ekranu. Hub USB 3.0.
Rodzajmonitor gamingowymonitor gamingowy
Przekątna34 "34 "
Wyświetlacz
Zakrzywiony ekran1500R3800R
Rodzaj matrycy*VAAH-IPS
Powłoka ekranuantyrefleksyjnaantyrefleksyjna
Rozdzielczość3440x1440 (21:9)2560x1080 (21:9)
Rozmiar piksela0.23 mm0.31 mm
Czas reakcji (GtG)4 ms5 ms
Częstotliwość odświeżania144 Hz144 Hz
Kąt widzenia w pionie178 °178 °
Kąt widzenia w poziomie178 °178 °
Jasność300 cd/m²300 cd/m²
Kontrast statyczny3 000:11 000:1
Głębia koloru16.7 mln kolorów (8 bit)16.7 mln kolorów (8 bit)
Przestrzeń barw (sRGB)121 %99 %
Złącza
Transmisja wideo
DisplayPort v 1.4 /2 szt./
HDMI 2 szt.
v 2.0
DisplayPort
HDMI 1 szt.
 
Złącza (opcjonalnie)
wyjście mini Jack (3.5 mm)
wyjście mini Jack (3.5 mm)
Funkcje i możliwości
Funkcje i możliwości
PBP (Picture by Picture)
Flicker-Free
AMD FreeSync
 
PBP (Picture by Picture)
Flicker-Free
 
NVIDIA G-Sync
Obrót ekranu
Regulacja wysokości
Hub USB 3.x
 /2 szt./
Szybkie ładowanie
Funkcje gamingowe
 
 
 
celownik
podświetlenie ciemnych obszarów /Black Stabilizer/
Tryb dynamicznej synchronizacji ruchu
Dane ogólne
Uchwyt na słuchawki
Uchwyt ściennyVESA100x100 mm
Pobór mocy60 W
Wymiary (SxWxG)810x521x243 mm
821x566x279 mm /z podstawą/
Waga8 kg
8.3 kg /z podstawą/
Kolor obudowy
Data dodania do E-Katalogpaździernik 2019wrzesień 2017

Zakrzywiony ekran

Obecność zakrzywionego ekranu w konstrukcji monitora.

Taki ekran ma lewą i prawą krawędź zakrzywioną do przodu – uważa się, że taki kształt znacząco poprawia percepcję w porównaniu do płaskiej powierzchni. Jednocześnie sensowne jest zapewnienie tej funkcji tylko na dość dużych przekątnych - co najmniej 30"; dlatego jest ona typowa głównie dla modeli z wyższej półki. Warto też zaznaczyć, że aby wykorzystać wszystkie zalety zakrzywionego ekranu trzeba na niego patrzeć z pewnego punktu - z optymalnej odległości, dokładnie pośrodku, jednak w przypadku monitorów komputerowych zwykle nie stanowi to problemu.

Głównym parametrem zakrzywionego ekranu jest promień krzywizny. Jest on wskazany w milimetrach wzdłuż promienia okręgu, którego zagięcie odpowiada zagięciu monitora: na przykład oznaczenie 1800R oznacza promień 1,8 m.

Im mniejsza liczba w tym oznaczeniu, tym bardziej zakrzywiony ekran (przy wszystkich pozostałych czynnikach niezmienionych). Jednocześnie niektórzy producenci twierdzą, że idealna wartość krzywizny wynosi 1000R: podobno przy tej krzywiźnie ekranu obraz na nim okazuje się być jak najbliżej naturalnego pola widzenia człowieka, a im bliżej krzywizna monitora wynosi 1000R, tym lepsze wrażenia wizualne. Jednak w praktyce wiele zależy od osobistych preferencji; a przy oglądaniu z dużej odległości (przekraczającej promień krzywizny półtora raza lub więcej) tracone są wszystkie zalety zakrzywionego ekranu.

Rodzaj matrycy

Technologia, w której wykonana jest matryca monitora.

TN+film. Najstarsza i najbardziej rozpowszechniona technologia produkowania matryc. Oryginalne monitory TN (Twisted Nematic) mają szybki czas reakcji i niski koszt, ale jakość obrazu jest przeciętna. Na przykład jakość odwzorowania barw jest niska, a idealna czerń jest generalnie niemożliwa do odtworzenia. Ponadto oryginalna technologia TN zapewnia stosunkowo małe kąty widzenia. Aby poprawić tę sytuację, na powierzchnię matrycy nakłada się specjalną folię. Te matryce nazwano „TN+film”. Monitory z taką matrycą są rozpowszechnione i niedrogie. Idealnie nadają się do wykorzystania przez niewymagających użytkowników zarówno w domu, jak i w biurze, a gracze docenią szybki czas reakcji.

*VA (Vertical Aligment, opcje: MVA, PVA, Super MVA, Super PVA). Swego rodzaju przejściowa opcja między drogą i wysokiej jakości IPS a budżetową TN. Zapewniają dość wysokiej jakości odwzorowanie barw, w tym czerni, kąty widzenia sięgają 178°. Główną wadą matryc VA jest znaczny czas reakcji (szczególnie w przypadku monitorów MVA), przez co takie monitory stosunkowo słabo nadają się do oglądania filmów i szybkich gier. Ta wada jest stopniowo eliminowana, a najnowsze monitory VA zbliżają się do TN+film pod względem czasu reakcji.

— IPS. Początkowo techn...ologia IPS została stworzona z myślą o monitorach wysokiej klasy (w szczególności „designerskich”), dla których kluczowymi parametrami była jakość odwzorowania barw oraz szeroka przestrzeń barw. Przy tych wszystkich zaletach oryginalne matryce IPS miały szereg poważnych wad - przede wszystkim niską szybkość reakcji i imponujący koszt. W związku z tym opracowano wiele modyfikacji technologii IPS, mających w pewnym stopniu skompensować te wady.

OLED. Monitory z ekranami wykorzystującymi organiczne diody elektroluminescencyjne - OLED. Takie diody LED można wykorzystywać zarówno do podświetlenia tradycyjnej matrycy, jak i jako elementy, z których zbudowany jest ekran. W pierwszym przypadku przewagami OLED nad tradycyjnym podświetleniem LED są kompaktowość, wyjątkowo niski pobór mocy, równomierność podświetlenia, a także doskonała jasność i kontrast. A w matrycach w całości składających się z OLED te zalety są jeszcze wyraźniejsze. Głównymi wadami monitorów OLED są: wysoka cena (która jednak stale spada wraz z rozwojem i udoskonalaniem technologii), a także podatność pikseli organicznych na wypalanie się przy transmisji statycznych obrazów przez długi czas lub obrazów ze statycznymi elementami (pasek powiadomień, zegar itp.).

QLED. Monitory zbudowane w technologii kropek kwantowych (QLED). Ta technologia może być stosowana w różnych rodzajach matryc. Polega ona na zastąpieniu zestawu kilku filtrów barwnych stosowanych w klasycznych matrycach specjalną cienkowarstwową powłoką opartą na nanocząsteczkach, a tradycyjnych białych diod LED na niebieskie. Pozwala to na uzyskanie wyższej jasności, nasycenia kolorów i jakości odwzorowania barw przy jednoczesnym zmniejszeniu grubości i zużycia energii. Ponadto QLED dobrze nadaje się do zakrzywionych ekranów. Minusem tych zalet jest wysoki koszt.

QD-OLED. Rodzaj hybrydowych matryc, łączących w sobie „kropki kwantowe” (Quantum Dot) i organiczne diody elektroluminescencyjne (OLED). Technologia czerpie najlepsze rozwiązania z QLED i OLED: opiera się na niebieskich diodach LED, samoświecących pikselach (zamiast zewnętrznego podświetlenia) i „kropkach kwantowych”, które pełnią rolę filtrów barwnych, ale jednocześnie prawie nie osłabiają światło (w odróżnieniu od tradycyjnych filtrów). Dzięki zastosowaniu szeregu zaawansowanych rozwiązań twórcom udało się uzyskać bardzo imponujące parametry, znacząco przewyższające wiele innych matryc OLED. Należą do nich wysoka jasność szczytowa od 1000 nitów (cd/m²), doskonały kontrast i głębia czerni, a także rozszerzona przestrzeń barw (ponad 120% gamy DCI P3). Takie matryce spotyka się głównie w drogich, zaawansowanych monitorach o dużej przekątnej ekranu.

— AHVA. Rodzaj matrycy stworzony przez AU Optronics (joint venture pomiędzy Acer i BenQ) jako rozwiązanie podobne do współczesnego IPS. Wśród kluczowych zalet tej opcji w porównaniu z analogami jest prawie całkowity brak zniekształceń kolorów pod każdym kątem widzenia.

— PLS (Plane to Line Switching). Ten rodzaj matrycy został opracowany przez inżynierów Samsunga. Opiera się na znanej technologii IPS. Pod pewnymi względami, a mianowicie: jasność i kontrast PLS przekracza IPS o 10%. Głównym celem stworzenia nowego typu ekranów było obniżenie kosztu matrycy, zdaniem dewelopera koszt produkcji został obniżony o 15%, co wpłynie pozytywnie na ostateczną cenę monitorów w porównaniu z odpowiednikami IPS.

— IGZO. Technologia wprowadzona przez firmę Sharp w 2012 roku. Kluczową różnicą pomiędzy matrycami IGZO a klasycznymi matrycami LCD jest to, że w warstwie aktywnej (odpowiedzialnej za tworzenie obrazu) zastosowano nie krzem amorficzny, a materiał półprzewodnikowy na bazie tlenku indu, galu i cynku. Umożliwia to tworzenie ekranów o niezwykle krótkim czasie reakcji i dużej gęstości pikseli, a ta technologia jest uważana za dobrze dopasowaną do ekranów o ultrawysokiej rozdzielczości. Przy tym wszystkim cechy odwzorowania barw pozwalają na stosowanie monitorów IGZO nawet w profesjonalnym polu, a pobór mocy jest bardzo niski. Główną wadą tej odmiany jest jej wysoki koszt.

- UV2A. Technologia LCD opracowana przez firmę Sharp i wprowadzona w 2009 roku. Jedną z kluczowych cech matryc UV2A jest to, że są zbudowane na ciekłych kryształach wrażliwych na światło ultrafioletowe. I to właśnie promieniowanie UV jest wykorzystywane jako sygnał sterujący – zapewnia to, że kryształy obracają się we właściwym kierunku, tworząc obraz. Techniczne cechy takich układów są takie, że położenie poszczególnych kryształów można regulować z niezwykle dużą dokładnością – nawet do kilku pikometrów (przy wielkości samych kryształów około 2 nm). Według producenta zapewnia to dwie kluczowe korzyści: brak „wycieku” podświetlenia oraz lepszą transmisję światła przy „otwartych” kryształach. Pierwsza pozwala osiągnąć bardzo głęboką i bogatą czerń, druga zapewnia doskonałą jasność przy niskim zużyciu energii, a w połączeniu te dwie cechy umożliwiają tworzenie ekranów o bardzo wysokim współczynniku kontrastu statycznego - aż 5000:1. Jednocześnie zwracamy uwagę, że rzeczywiste cechy kontrastu w monitorach UV2A mogą być zauważalnie skromniejsze – wszystko zależy od specyfikacji konkretnej matrycy oraz cech, które producent był w stanie lub uznał za konieczne zapewnić.

- Mini LED IPS. Odmiana znanej matrycy IPS, która jest oświetlona szeregiem diod LED o zmniejszonych rozmiarach. Mały kaliber poszczególnych źródeł światła (około 100-200 mikronów) pozwala na formowanie znacznie większej liczby stref kontrolowanego lokalnego ściemniania ekranu. Razem zapewnia to lepszą jasność, kontrast, nasycenie kolorów i głębię czerni oraz podnosi poprzeczkę dla technologii HDR.

- Mini LED VA. Odmiana matryc VA z systemem podświetlenia Mini LED. Składa się z mnóstwa maleńkich diod LED, które ze względu na swoją liczbę tworzą wielokrotnie więcej lokalnych stref przyciemniania ekranu niż standardowe płótna. W rezultacie panele VA z podświetleniem Mini LED mogą pochwalić się lepszym odwzorowaniem kolorów, imponującą głębią czerni i znacznie poprawioną wydajnością treści HDR.

- Mini LED QLED. Za płaszczyzną paneli QLED w monitorach z systemem podświetlenia Mini LED kryją się tysiące miniaturowych diod LED nie większych niż 200 mikronów, które dzielą ekran na bardzo wiele stref z kontrolowanym, lokalnym ściemnianiem. Można je indywidualnie przyciemniać w celu pełnego wyświetlania treści HDR z jasnym światłem i głęboką czernią.

Rozdzielczość

Natywna rozdzielczość monitora. W sytuacji idealniej rozdzielczość sygnału wideo powinna być taka sama, wtedy jakość obrazu na ekranie będzie maksymalna.

Ogólnie rzecz biorąc, im wyższa rozdzielczość, tym wyższa szczegółowość i bardziej zaawansowany ekran, jednak tym drożej będzie kosztować (przy pozostałych warunkach równych) i tym większa moc karty graficznej będzie wymagana do poprawnej pracy z tą rozdzielczością. Jeśli chodzi o konkretne wartości, we współczesnych monitorach są one dość zróżnicowane, jednak wszystkie rozdzielczości można podzielić na kilka ogólnych kategorii:

- HD (720). Ekrany odpowiednie dla wideo HD 1280x720. Warto zauważyć, że w tej kategorii znajdują się również modele o rozdzielczości 1024x768 - wskaźnik ten jest nieco mniejszy niż jest to konieczne do wyświetlenia HD w oryginalnym rozmiarze, ale jakość obrazu HD na takim ekranie jest wciąż dość wysoka. Najpopularniejszą opcją wśród monitorów HD jest 1366x768, są też modele 1280x768, 1280x800 i nie panoramiczne (5:3) 1280x1024.

- Full HD (1080). Monitory do wyświetlania obrazu w formacie Full HD. Klasyczna, najpopularniejsza wersja takiej rozdzielczości to 1920x1080 (format 16:9), jednak wśród monitorów są inne opcje, w tym tak specyficzne, jak ultraszeroki format (32:9) 3840x1080, a także 1600x1200 (nie mieści się w nim klatka 19...20x1080 w szerokości, ale ta rozdzielczość jest nadal uważana za Full HD). Obecnie Full HD stanowi dobry kompromis między jakością obrazu, kosztem ekranu i wymaganiami karty graficznej. W rezultacie właśnie ten format jest najpopularniejszy wśród współczesnych monitorów.

- Quad HD. Rodzaj pośredniej opcji między popularnym Full HD a zaawansowanym, wymagającym Ultra HD 4K. Obejmuje rozdzielczości od 1920x1440 do 3200x2400, chociaż większość współczesnych monitorów Quad HD mieści się w węższym zakresie - od 2560x1440 do 3840x1600. Taki ekran może być dobrą opcją dla tych, dla których „Full HD to za mało, ale 4K to dużo”.

- Ultra HD (4K). Ten standard zakłada poziomy rozmiar klatki wynoszący około 4000 px, ale określone rozdzielczości mogą się różnić. Popularne opcje dostępne w monitorach to 3840x2160, 4096x2160 i 4096x2304. Ogólnie rzecz biorąc, UHD 4K wytwarza na ekranie 4 razy więcej px niż Full HD; takie rozdzielczości są typowe dla monitorów wysokiej klasy i najczęściej łączy się je z dużą przekątną - od 27” (choć są wyjątki).

- Ultra HD (5K). Jeszcze bardziej zaawansowany standard niż UHD 4K, przy założeniu poziomego rozmiaru klatki około 5000 px - na przykład 5120x2160. Jest używany niezwykle rzadko, głównie w profesjonalnych ekranach z najwyższej półki.

- 8K. Dalszy, po 5K, rozwój standardów HD, zapewniający klatkę o rozmiarze poziomym około 8000 - na przykład jedna z opcji rozdzielczości 8K w monitorach to 7680x4320. Pozwala uzyskać niezwykle wyraźne i szczegółowe obrazy, ale takie monitory o wysokiej rozdzielczości są bardzo drogie, a źródło sygnału w takiej rozdzielczości nie jest tak łatwe do znalezienia. Dlatego do tej pory na rynku jest tylko kilka monitorów 8K.

Rozmiar piksela

Rozmiar jednego punktu (piksela) na ekranie monitora. Parametr ten związany jest z maksymalną rozdzielczością monitora i jego przekątną - im wyższa rozdzielczość, tym mniejszy rozmiar piksela (przy tej samej przekątnej) i odwrotnie, im większa przekątna, tym większy rozmiar jednego piksela (przy tej samej rozdzielczości). Im mniejszy rozmiar jednego piksela, tym wyraźniejszy obraz będzie wyświetlany na monitorze, tym mniej zauważalna będzie jego ziarnistość, co jest szczególnie ważne na dużych monitorach. Z drugiej strony, mały rozmiar piksela stwarza dyskomfort podczas pracy z drobnymi szczegółami i tekstem - dotyczy to głównie monitorów o małej przekątnej.

Czas reakcji (GtG)

Czas, jaki potrzebuje każdy pojedynczy punkt na monitorze, aby przełączyć się z jednego stanu do drugiego. Im krótszy czas reakcji, tym szybciej matryca reaguje na sygnał sterujący, tym mniejsze opóźnienie i lepsza jakość obrazu w scenach dynamicznych.

Zwróć uwagę, że w danym przypadku stosowana jest metoda gray-to-gray (czas uruchomienia od 10% szarego do 90%). Warto zwrócić uwagę na parametr ten, jeśli monitor kupuje się do dynamicznych gier, oglądania filmów i innych zastosowań związanych z szybkim ruchem na ekranie. I nawet w takich przypadkach wystarczy szybkość reakcji 8 ms; dalsze skrócenie czasu odpowiedzi nie wpływa na jakość postrzeganego obrazu.

Kontrast statyczny

Kontrast statyczny zapewniany przez ekran monitora.

Parametr ten opisuje różnicę między najjaśniejszą bielą a najciemniejszą czernią, jaką może wyświetlić ekran. Jednocześnie, w przeciwieństwie do kontrastu dynamicznego (patrz poniżej), różnica jest wskazywana pod warunkiem, że jasność podświetlenia ekranu pozostaje niezmieniona. Innymi słowy, jest to kontrast, który można osiągnąć w ramach jednej klatki. Kontrast statyczny jest nieuchronnie niższy niż dynamiczny. Jednak to on opisuje podstawowe możliwości ekranu.

Minimalny statyczny współczynnik kontrastu dla akceptowalnej jakości obrazu wynosi 250:1, ale nawet najskromniejsze współczesne monitory dają około 400:1 (i wartość 1000:1 nie należy do najwyższej klasy), a w modelach z wyższej półki wskaźnik ten może osiągnąć 2000:1, a nawet więcej.

Przestrzeń barw (sRGB)

Przestrzeń barw monitora według modelu kolorów sRGB.

Każdą przestrzeń barw podaje się w procentach, ale nie w odniesieniu do całej gamy widocznych kolorów, ale w odniesieniu do warunkowej przestrzeni barw (modelu kolorów). Wynika to z faktu, że żaden współczesny ekran nie jest w stanie wyświetlić wszystkich kolorów widocznych dla ludzi. Niemniej jednak im większa przestrzeń barw, tym szersze możliwości monitora, tym lepsze odwzorowanie barw.

Obecnie sRGB jest de facto standardowym modelem kolorów dla sprzętu komputerowego; jest używany przy projektowaniu i produkcji większości kart graficznych. W przypadku telewizji stosowany jest standard Rec. o podobnych parametrach. Jednocześnie modele te są identyczne w gamie kolorystycznej, a procent pokrycia według nich okazuje się taki sam. W najbardziej zaawansowanych monitorach może osiągnąć, a nawet przekroczyć 100%; to właśnie te wartości są uważane za niezbędne w przypadku ekranów z najwyższej półki, m.in. profesjonalnych.

Transmisja wideo

VGA. Złącze przeznaczone do przesyłania analogowych sygnałów wideo już w czasach monitorów CRT (specjalnie do nich). Dziś jest uważane za przestarzałe i stopniowo wycofuje się z użytkowania - w szczególności ze względu na małą przepustowość, która nie pozwala w pełni współpracować z treściami HD, a także podwójną konwersję sygnału przy zastosowaniu VGA w monitorach LCD (co może stać się potencjalnym źródłem zakłóceń).

DVI. Złącze do przesyłania sygnału wideo zaprojektowane specjalnie dla urządzeń LCD, w tym monitorów. Chociaż skrót DVI pierwotnie oznacza „cyfrowy interfejs wideo”, interfejs ten umożliwia również analogową transmisję danych. W rzeczywistości istnieją trzy główne typy DVI: analogowe, kombinowane i cyfrowe. Pierwsza odmiana w nowoczesnym sprzęcie komputerowym jest prawie nieużywana (funkcję tę pełni tak naprawdę złącze VGA), a złącze czysto cyfrowe - DVI-D - jest wskazane osobno w naszym katalogu (patrz poniżej). Dlatego jeśli specyfikacja monitora wskazuje „po prostu DVI” - najprawdopodobniej chodzi o kombinowane złącze DVI-I. Pod względem specyfikacji analogowego sygnału wideo jest ono zbliżone do opisanego powyżej VGA (a nawet kompatybilne z nim poprzez najprostszy adapter), pod względem możliwości cyfrowych - do DVI-D (jednokanałowego, a nie Dual Link). Jednak ze względu na rozprzestrzenianie się czysto cyfrowych standardów, DVI-I jest coraz rzadz...iej spotykane.

DVI-D. Odmiana interfejsu DVI opisanego powyżej, obsługująca wyłącznie cyfrowy format sygnału wideo. Standardowy (Single Link) interfejs DVI-D umożliwia transmisję wideo w rozdzielczościach do 1920x1080 przy częstotliwości odświeżania 75 Hz lub 1920x1200 przy częstotliwości odświeżania 60 Hz, co już wystarcza do pracy ze współczesnymi rozdzielczościami aż do Full HD. Dodatkowo istnieje dwukanałowa (Dual Link) wersja tego złącza, która ma zwiększoną przepustowość i pozwala na pracę z rozdzielczościami do 2560x1600 (przy 60 Hz; lub 2048x1536 przy 75 Hz). Odpowiednio konkretny rodzaj DVI-D zależy od rozdzielczości monitora. W takim przypadku jednokanałowy ekran można podłączyć do dwukanałowej karty graficznej, ale nie odwrotnie. Zauważamy również, że sytuacja jest podobna w przypadku złączy: porty Single Link i Dual Link różnią się nieco konstrukcją, a jednokanałowy kabel jest kompatybilny z dwukanałowym wejściem/wyjściem, ale znowu nie odwrotnie.

DisplayPort. Interfejs pierwotnie stworzony do transmisji wideo (jednak można go wykorzystać także do przesyłania sygnałów audio – w tym DisplayPort działa podobnie jak HDMI). Występuje w wielu modelach monitorów. Należy pamiętać, że monitory z wejściami DisplayPort są również kompatybilne z wyjściami Thunderbolt (za pośrednictwem adaptera).

Konkretne możliwości tego złącza zależą od jego wersji. We współczesnych monitorach spotyka się następujące wersje:
  • v.1.2. Najwcześniejsza z rozpowszechnionych w naszych czasach wersji, wydana w 2010 roku. To właśnie w niej po raz pierwszy wprowadzono takie funkcje, jak obsługa 3D i możliwość łączenia szeregowego wielu ekranów. Wersja 1.2 umożliwia przesyłanie wideo 5K z prędkością 30 klatek na sekundę, możliwa jest również praca z wyższymi rozdzielczościami (do 8K), ale z pewnymi ograniczeniami.
  • v.1.3. Wersja DisplayPort wydana w 2014 roku. Ma półtora razy większą przepustowość niż v.1.2 i pozwala na transmisję wideo 8K przy 30 kl./s, 5K - przy 60 kl./s i 4K - przy 120 kl./s. Dodatkowo ta wersja posiada funkcję Dual-mode, która umożliwia podłączenie do wyjść HDMI i DVI za pomocą najprostszych adapterów pasywnych.
  • v.1.4. W tej wersji maksymalna liczba klatek na sekundę przy pracy z jednym ekranem wzrosła do 120 kl/s dla standardu 8K i do 240 kl/s dla standardów 4K i 5K (dane mają być przesyłane z kompresją z wykorzystaniem technologii DSC – Display Stream Compression). Inne funkcje obejmują kompatybilność z HDR10 i możliwość jednoczesnego przesyłania do 32 kanałów audio.
  • v.2.1. Wersja 2022 roku wykorzystująca tę samą specyfikację warstwy fizycznej co USB4. Przepustowość interfejsu została podwojona w porównaniu z wersją 1.4 (do 80 Gbit/s, z czego 77,37 Gbit/s jest dostępne do przesyłania danych). Przy tym realizowano obsługę podłączenia wyświetlaczy o rozdzielczościach do 16K przy 60 kl./s, 8K przy 120 kl./s, 4K przy 240 Hz i 2K przy 480 Hz (bez dodatkowego wykorzystania technologii DSC – Display Stream Compression). Kable DP40 (40 Gb/s) mogą być dłuższe niż dwa metry, a kable DP80 (80 Gb/s) mogą mieć długość ponad jednego metra.


Mini Display Port. Zmniejszona wersja złącza DisplayPort opisanego powyżej, używana głównie w laptopach; szczególnie popularna w laptopach Apple. Ostatnio pojawił się trend zastępowania Mini Display Port uniwersalnym interfejsem Thunderbolt; jednak ten interfejs działa przez to samo złącze i zapewnia te same możliwości. Innymi słowy, monitory można podłączyć do Thunderbolt (wersji 1 i 2) za pomocą standardowego kabla miniDisplayPort, bez użycia adapterów (w przypadku v3 adapter jest nadal potrzebny).

— HDMI. Interfejs HDMI został pierwotnie zaprojektowany do przesyłania wideo o wysokiej rozdzielczości i wielokanałowego dźwięku w postaci cyfrowej za pomocą jednego kabla. Jest to obecnie najpopularniejszy z interfejsów podobnego przeznaczenia; wyjścia HDMI są praktycznie obowiązkowe zarówno w komputerowych kartach graficznych, jak i w centrach multimedialnych, odtwarzaczach DVD/Blu-ray i innych podobnych urządzeniach.

Obecność w monitorze kilku wyjść danego typu pozwala na podłączenie go do kilku źródeł sygnału jednocześnie — na przykład do komputera i tunera telewizji satelitarnej. W ten sposób możesz przełączać się między źródłami za pomocą ustawień nie tracąc czasu na bawienie się z kablami, a także użyć funkcji PBP.

Przy tym sam port ma różne wersje, a najbardziej popularne obecnie wersję to:
  • — v.1.4. Najwcześniejsza z aktywnie używanych obecnie wersja; pojawiła się w 2009 roku. Obsługuje rozdzielczości do 4096x2160 przy 24 kl./s, a w standardzie Full HD (1920x1080) liczba klatek na sekundę może osiągać 120 kl./s; możliwa jest także transmisja wideo 3D.
  • v.2.0. Wersja wprowadzona w 2013 roku jako olbrzymia aktualizacja standardu HDMI. Obsługuje wideo 4K z szybkością do 60 kl./s (stąd nazwa HDMI UHD), a także do 32 kanałów audio i do 4 strumieni audio jednocześnie. Ta wersja obsługuje także ultrawide 21:9.
  • v.2.1. Dość znacząca aktualizacja w stosunku do wersji 2.0, wprowadzona pod koniec 2017 roku. Dalsze zwiększenie przepustowości umożliwiło obsługę rozdzielczości do 8K przy 120 kl./s włącznie. Wprowadzono także ulepszenia dotyczące pracy z HDR. Należy zaznaczyć, że do korzystania ze wszystkich funkcji HDMI v 2.1 potrzebne są kable HDMI Ultra High Speed, chociaż podstawowe funkcje są też dostępne w przypadku zwykłych kabli.


USB C (DisplayPort AltMode). Inna odmiana interfejsu USB używanego do pracy z sygnałem wideo. Cechuje się małymi rozmiarami (niewiele większymi od microUSB) oraz posiada dwustronną konstrukcję, która pozwala na podłączenie wtyczki z dowolnej strony - to sprawia, że Type C jest wygodniejszy niż poprzednie standardy. Jednocześnie zauważamy, że taki monitor można początkowo zaprojektować do podłączenia do wyjścia USB C (przynajmniej taki kabel adaptera może być dostarczony w zestawie), ten punkt warto wyjaśnić osobno.

Interfejs Thunderbolt. Thunderbolt to protokół przesyłania danych (stosowany w urządzeniach Apple), którego przepustowość sięga 40 Gb/s. Sama wtyczka, podobnie jak prędkość, zależy od wersji: Thunderbolt v1 i v2 używają miniDisplayPort (patrz wyżej), monitory z wejściami Thunderbolt niekoniecznie są kompatybilne z oryginalnymi wyjściami miniDisplayPort - warto wyjaśnić tę kompatybilność osobno. Thunderbolt v3 jest oparty na złączu USB C (patrz wyżej).

Funkcje i możliwości

 
Dynamika cen
Xiaomi Mi Surface Display 34 często porównują
LG 34UC89G często porównują